
Cryptography

1 Private-key cryptographic system

The general setting is as follows. There are three parties named Alice, Bob and Eve.
Alice’s goal is to send a private message to Bob over some channel. In particular, Alice
wants only Bob to know what her message is, but unfortunately, any message she sends
over the channel can be intercepted by the eavesdropper Eve. Therefore, she would
like to first encrypt her message (which is also known as the plaintext) and then send the
encrypted message (the ciphertext) to Bob over the channel. Bob should be able to decrypt
the ciphertext and recover the plaintext. If the system is secure, then Eve learns no
information about the plaintext by seeing the ciphertext. If the system is not secure, we
will call it broken. We assume that Eve knows the encryption and decryption algorithms
used by Alice and Bob respectively.

In a private-key cryptographic system, a protocol is designed as follows. We assume
Alice has a private key KA and Bob has a private key KB . These keys help Alice and
Bob encrypt and decrypt messages. In particular, if M is the plaintext that Alice wants to
send, she encrypts it using an encryption algorithm Enc that takes M and KA as input,
and produces a ciphertext C as output: Enc(M,KA) = C. This ciphertext C is sent to
Bob, and Bob uses a decryption algorithm Dec that takes a ciphertext C and his private
key KB as input, and produces a plaintext M : Dec(C,KB) = M . (We assume that
M,C,KA,KB are encoded as strings over some finite alphabet Σ.)

1



CMU CS251 Spring 2022

A very simple example of a private-key protocol is the well-known Caesar shift.1 In
this protocol, 0 ≤ KA = KB < 25 and a plaintext is encrypted by replacing each letter
with a letter which is KA positions down the alphabet. This system is easy to break since
the number of possibilities for the key is very small. Therefore one can try each possible
key value one by one.

There are much more sophisticated private-key protocols. We now present a simple
one that is provably perfectly secure.

1.1 One-time pad

In this section, we assume that the plaintext M ∈ {0, 1}n is a binary string of length n.
Then we choose KA = KB ∈ {0, 1}n uniformly at random (and denote it by K). The
encryption algorithm takes the bit-wise xor of M and K to produce an n-bit ciphertext
C. Or in other words, for each i, the i’th bit of C, C[i], is defined to be M [i]⊕K[i]. Below
is an example.

The decryption algorithm is exactly the same as the encryption algorithm. It takes C
and K as input, and produces M by taking the bit-wise xor of C and K. Observe that
for all i,

C[i]⊕K[i] = (M [i]⊕K[i])⊕K[i] = M [i]⊕ (K[i]⊕K[i]) = M [i],

so the decryption algorithm correctly recovers the original message M .
For any plaintext M ∈ {0, 1}n, if K ∈ {0, 1}n is chosen uniformly at random, then

the ciphertext C is a uniformly random element of {0, 1}n. This means that Eve learns
nothing about M by seeing C, so the system is perfectly secure. The downside is that
Alice and Bob have to share a key that is as long as the message itself.2

Exercise (One-time pad based on modular multiplication). Note that in the one-time
pad cryptographic scheme described above, the underlying universe that we are dealing

1See https://en.wikipedia.org/wiki/Caesar_cipher for details on the Caesar shift.
2For the system to remain perfectly secure, you should not reuse the same key for more than one message.

This is the reason for the name “one-time pad”.

2

https://en.wikipedia.org/wiki/Caesar_cipher


CMU CS251 Spring 2022

with is Zn
2 with the operation being bit-wise xor. Describe a similar scheme that uses Z∗

N

as the universe.

It is natural to ask whether there is any perfectly secure system like one-time pad
that uses a shorter key. Claude Shannon proved that the answer is “no”. To state his
result informally, he showed that if K is shorter than M and Eve is computationally
unbounded, then Eve can learn some information about the message M .

Given this, we let computational complexity come to our rescue. It is completely
reasonable to assume that Eve is indeed computationally bounded. So from now on, we
will assume that Eve is a polynomial-time agent.

1.2 Diffie-Hellman secret key exchange

We present a protocol for Alice and Bob to agree on a secret key K by communicating
publicly. The protocol is secure if Eve has no information about K even though she sees
all the communication between Alice and Bob. This sounds like an impossible task, but
it is actually believed to be feasible.

The protocol makes use of the assumption that the Discrete Log problem is compu-
tationally hard and it goes as follows. Alice picks privately a (sufficiently large) random
prime number P , a generator B in Z∗

P , and a random exponent E1 ∈ Zϕ(P ).3 She com-
putes BE1 in Z∗

P and sends over to Bob P,B,BE1 . Bob privately picks a random expo-
nent E2 ∈ Zϕ(P ) and computes BE2 in Z∗

P . He sends BE2 to Alice. At this point both
players can privately compute S = BE1E2 in Z∗

P , which is defined as the secret key that
they now share. The protocol is illustrated below.

There are two important questions related to this protocol. First, are all the operations
done by Alice and Bob polynomial-time computable? Second, how secure is the system?

Even though we won’t explicitly discuss it, every computation done by Alice and
Bob can indeed be done in polynomial time. For the security, observe that we definitely
need the Discrete Log problem to be computationally hard, because otherwise, Eve can
compute E1 from BE1 and E2 from BE2 . Then it is easy for her to compute the “se-
cret” BE1E2 (since she also knows B). To be more careful though, we want that given
P,B,BE1 , BE2 (i.e. what Eve sees), it is computationally hard to compute BE1E2 . This is
known as the Diffie-Hellman assumption. Unfortunately we cannot prove this assump-
tion since if we could, we would be also proving P 6= NP. Even if the Diffie-Hellman
assumption holds, we should not be satisfied. Not only we don’t want Eve to compute
the secret BE1E2 , but we don’t want her to gain any information about BE1E2 (e.g. not

3Why is the exponent chosen from Zϕ(P )? Recall that thanks to Euler’s Theorem, if we are exponentiating
an element A ∈ Z∗

N , then we can effectively think of the exponent as living in the set Zϕ(N).

3



CMU CS251 Spring 2022

even the first bit of it). The assumption that Eve learns nothing about the secret is known
as the Decisional Diffie-Hellman assumption.4

2 Public-key cryptographic system

In a public-key cryptographic system, our goal is to design a protocol that allows Alice
to send a message to Bob without the need of having to exchange messages in order to
share a secret key.

In order to establish this, a public-key cryptographic system uses the following gen-
eral strategy. Bob generates a tuple of keys (Kpri,Kpub), where Kpri is called the private
key and is kept private to him, and Kpub is called the public key and is published to the
world. If someone (e.g. Alice) wants to send a message to Bob, they use the public key
to encrypt their message M . That is, the ciphertext C is produced by running an encryp-
tion algorithm Enc(M,Kpub). Once Bob receives C, he decrypts it using his private key
by running a decryption algorithm Dec(C,Kpri).

We now present different instantiations of this idea.

2.1 ElGamal public-key cryptographic system

The first public-key protocol we present is similar in nature to the Diffie-Hellman secret-
key exchange protocol. In fact, it is basically combining the Diffie-Hellman secret-key
exchange protocol with the one-time pad protocol. It is easy to combine them to create
a private-key cryptographic system. Here, we’ll see that they can also be combined to
create a public-key cryptographic system.

To make the correspondence clear with the Diffie-Hellman secret-key exchange pro-
tocol, we reverse the roles of Alice and Bob. Below are the details.

In the ElGamal protcol, Bob picks a (sufficiently large) prime number P , a generator
B ∈ Z∗

P , and a random exponent E1 ∈ Zϕ(P ). He computes BE1 in Z∗
P . The private key

is Kpri = E1 and the public key is Kpub = (P,B,BE1).
The message M that Alice wants to send is viewed as an element of Z∗

P (it is easy to
agree on an encoding scheme to do this). To encrypt her message, Alice does the follow-
ing. She picks a random exponent E2 ∈ Zϕ(P ), and computes BE2 , BE1E2 and MBE1E2

in Z∗
P . Then the ciphertext she sends over to Bob is C = (C1, C2) = (BE2 ,MBE1E2).

Once Bob receives this message, using C1 he first computes CE1
1 = BE1E2 in Z∗

P . Note

4Decisional Diffie-Hellman assumption turns out to be false in the group Z∗
P , but there are other cyclic

groups for which experts believe the assumption should hold.

4



CMU CS251 Spring 2022

that this is the secret key from the Diffie-Hellman protocol. Let’s call it S. He computes
S−1 in Z∗

P . Then he computes C2S
−1 = M to recover the original message M .

Even though this may seem like a non-simple protocol, it has a simple summary
once you understand the Diffie-Hellman secret-key exchange protocol. Effectively, Alice
and Bob are sharing the private secret S = BE1E2 as in the Diffie-Hellman secret-key
exchange protocol. Alice “masks” her message M using S (note that this is equivalent
to doing a one-time pad in the universe Z∗

P ). Since Bob also knows S, he can compute
its inverse, and therefore recover M .

As in the Diffie-Hellman secret-key exchange protocol, all the computation done by
Alice and Bob can be carried out in polynomial time. Furthermore, the security is based
on the same assumptions as in the Diffie-Hellman secret-key exchange protocol. The
details are omitted.

2.2 RSA public-key cryptographic system

The RSA cryptographic system uses the assumption that taking roots in the modular
universe is a computationally hard problem. Notice that taking roots is the inverse of
the exponentiation function. And in RSA, the encryption is indeed done using the expo-
nentiation function. Below are the details.

First, Bob picks two (sufficiently large) distinct prime numbers P and Q. He multi-
plies them together to obtain N = PQ.5 He picks an exponent E ∈ Z∗

ϕ(N).
6 He com-

putes E−1 in Z∗
ϕ(N) and keeps that as his private key, Kpri = E−1. The public key is

Kpub = (N,E).
The message M that Alice wants to send to Bob is viewed as an element of Z∗

N . To
encrypt her message, she computes C = ME in Z∗

N , and sends it over to Bob. The
decryption algorithm happens to be exactly the same as the encryption algorithm. Once
Bob receives C, he computes CE−1

in Z∗
N , and recovers M since CE−1

= (ME)E
−1

=

MEE−1

= M .
5Why is N chosen to be a product of primes and not just a prime number? We will explore this question

after we describe the protocol.
6Why is the exponent chosen from Z∗

ϕ(N)
? Once again, if we are exponentiating an element A ∈ Z∗

N , then
we can effectively think of the exponent as living in the set Zϕ(N). In the RSA protocol, we will need the
exponent to have an inverse in Zϕ(N) and therefore we pick it from Z∗

ϕ(N)
.

5



CMU CS251 Spring 2022

As before, it can be shown that all the computation done by Alice and Bob is polynomial-
time. We now make a few comments about the security of the system. What is the ad-
vantage that Bob has over Eve that allows him to decrypt the message? If Eve could
compute E−1 herself, then she would be able to decrypt the message as well. To com-
pute E−1, you need to know ϕ(N) since E−1 lives in Z∗

ϕ(N). Bob’s advantage is that he
can easily compute ϕ(N) because ϕ(N) = (P − 1)(Q − 1). In other words, the advan-
tage that Bob has is that he knows the prime factorization of N . If Eve could factor N
efficiently, then she could also easily compute ϕ(N) = (P − 1)(Q − 1). It turns out that
factoring N and computing ϕ(N) are computationally equivalent in the following sense.
Clearly, as we argued, if we can factor N in polynomial time, then we can compute ϕ(N)
in polynomial time. Furthermore, if we can compute ϕ(N) in polynomial time, then we
can factor N in polynomial time (we leave this as an exercise to the reader).

One might ask if computing ϕ(N) is the only way to crack RSA. We don’t know the
answer to this question. So we cannot rule out that there might be some other devious
way of recovering the message M without computing ϕ(N) (or factoring N ).

3 Check Your Understanding

Problem. 1. Consider the one-time pad cryptographic system. Show that for any
plaintext M ∈ {0, 1}n, if the key K ∈ {0, 1}n is chosen uniformly at random, then
the ciphertext C is a uniformly random element of {0, 1}n.

2. Describe the Diffie-Hellman secret key exchange protocol.

3. Quantum computers can compute the discrete log problem efficiently. Explain
how quantum computers can be used to break the Diffie-Hellman secret key ex-
change protocol.

4. Describe the RSA public-key protocol.

5. Quantum computers can compute the discrete root problem efficiently. Explain
how quantum computers can be used to break the RSA public-key protocol.

6. Quantum computers can compute the factoring problem (given an integer N , out-
put its prime factors) efficiently. Explain how quantum computers can be used to
break the RSA public-key protocol.

6



CMU CS251 Spring 2022

4 High-Order Bits

Important. 1. Understand the general outline of how private-key protocols and public-
key protocols work, independent of specific implementations of these ideas.

2. Make sure you understand how the one-time pad private-key protocol works and
why it is a perfectly secure protocol.

3. You should be able to describe the Diffie-Hellman secret key exchange protocol
and how it relates to the assumed hardness of the discrete log problem.

4. You should be able to describe the RSA public-key protocol and how it relates to
the assumed hardness of the discrete root problem. You should also understand
the relevance of the factoring problem in this setting.

7


	Private-key cryptographic system
	One-time pad
	Diffie-Hellman secret key exchange

	Public-key cryptographic system
	ElGamal public-key cryptographic system
	RSA public-key cryptographic system

	Check Your Understanding
	High-Order Bits

