
Approximation Algorithms

1 Basic Definitions

Intuitively, an optimization problem is a computational problem with the following
structure. An input x may have multiple “solutions” y, where each y has some “value”.
In a maximization optimization problem, given x, our goal is to find a solution y with max-
imum value (among all possible solutions). Such a y is called an optimal solution. The
value of an optimal solution is denoted by OPT(x). As an example, think of the maxi-
mum matching problem. Input x corresponds to a graph, and y corresponds to a match-
ing in the graph. The value of y is the number of edges in the matching (i.e. the size of
the matching). The goal is to output a maximum matching. And OPT(x) is the size of
the maximum matching in the graph x.

The concept of minimization optimization problem is defined analogously, with the only
difference being that our goal is to find a solution y with minimum value.

The formal definition of an optimization problem that we give below is actually not
important as long as we have a firm conceptual/intuitive understanding of the concept,
as described above.

Definition (Optimization problem). A minimization optimization problem is a function f :
Σ∗ ×Σ∗ → R≥0 ∪ {no}. If f(x, y) = r ∈ R≥0, we say that y is a solution to x with value r.
If f(x, y) = no, then y is not a solution to x. We let OPTf (x) denote the minimum f(x, y)
among all solutions y to x.1 We drop the subscript f , and just write OPT(x), when f is
clear from the context.

In a maximization optimization problem, OPTf (x) is defined using a maximum rather
than a minimum.

We say that an optimization problem f is computable if there is an algorithm such that
given as input x ∈ Σ∗, it produces as output a solution y to x such that f(x, y) = OPT(x).

1There are a few technicalities. We will assume that f is such that every x has at least one solution y, and
that the minimum always exists.

1

CMU CS251 Spring 2022

We often describe an optimization problem by describing the input and a corresponding
output (i.e. a solution y such that f(x, y) = OPT(x)).

Definition (Optimization version of the Vertex-cover problem). Given an undirected
graph G = (V,E), a vertex cover in G is a set S ⊆ V such that for all edges in E, at least
one of its endpoints is in S.

The VERTEX-COVER problem is the following. Given as input an undirected graph
G together with an integer k, output True if and only if there is a vertex cover in G of
size at most k. The corresponding language is

{〈G, k〉 : G is a graph that has a vertex cover of size at most k}.

In the optimization version of VERTEX-COVER, we are given as input an undirected
graph G and the output is a vertex cover of minimum size. We refer to this problem as
MIN-VC.

Using the notation in Definition (Optimization problem), the corresponding function
f is defined as follows. Let x = 〈G〉 for some graphG. If y represents a vertex cover inG,
then f(x, y) is defined to be the size of the set that y represents. Otherwise, f(x, y) = no.

Note (Examples of optimization problems). Each decision problem that we have de-
fined at the beginning of our discussion on Polynomial-Time Reductions has a natural
optimization version.

Note (NP-hardness for optimization problems). The complexity class NP is a set of de-
cision problems (or languages). Similarly, the set of NP-hard problems is a set of de-
cision problems. Given an optimization problem f , suppose it is the case that if f can
be computed in polynomial time, then every decision problem in NP can be decided in
polynomial time. In this case, we will abuse the definition of NP-hard and say that f is
NP-hard.

Definition (Approximation algorithm). • Let f be a minimization optimization prob-
lem and let α ≥ 1 be some parameter. We say that an algorithm A is an α-
approximation algorithm for f if for all instances x, f(x,A(x)) ≤ α ·OPT(x).

• Let f be a maximization optimization problem and let 0 < α ≤ 1 be some param-
eter. We say that an algorithm A is a α-approximation algorithm for f if for all
instances x, f(x,A(x)) ≥ α ·OPT(x).

Note that α can either be a constant or a function of n = |x|.

Important (Analyzing approximation algorithms). When showing that a certain mini-
mization problem has an α-approximation algorithm, you need to first present an algo-
rithm A, and then argue that for any input x, the value of the output produced by the
algorithm is within a factor α of the optimum:

f(x,A(x)) ≤ α ·OPT(x).

When doing this, it is usually hard to know exactly what the optimum value would be.
So a good strategy is to find a convenient lower bound on the optimum, and then argue
that the output of the algorithm is within a factor α of this lower bound. In other words,
if LB(x) denotes the lower bound (so LB(x) ≤ OPT(x)), we want to argue that

f(x,A(x)) ≤ α · LB(x).

For example, for the MIN-VC problem, we will use Lemma (Vertex cover vs matching)
below to say that the optimum (the size of the minimum size vertex cover) is lower
bounded by the size of a matching in the graph.

The same principle applies to maximization problems as well. For maximization
problems, we want to find a convenient upper bound on the optimum.

2

CMU CS251 Spring 2022

2 Examples of Approximation Algorithms

Lemma (Vertex cover vs matching). Given a graph G = (V,E), let M ⊆ E be a matching in
G, and let S ⊂ V be a vertex cover in G. Then, |S| ≥ |M |.

Proof. Observe that in a vertex cover, one vertex cannot be incident to more than one
edge of a matching. Therefore, a vertex cover must have at least |M | vertices in order to
touch every edge of M . (Recall that the size of a matching, |M |, is the number of edges
in the matching.)

Theorem (2-Approximation for MIN-VC). There is a polynomial-time 2-approximation al-
gorithm for the optimization problem MIN-VC.

Proof. We start by presenting the algorithm (known as Gavril’s algorithm), which greed-
ily chooses a maximal matching M in the graph, and then outputs all the vertices that are
incident to an edge in M .

def A(〈graph G = (V,E)〉) :

1. M = ∅.
2. For each edge e ∈ E:
3. If M ∪ {e} is a matching: M = M ∪ {e}.
4. S = set of all vertices incident to an edge in M.

5. Return S.

We need to argue that the algorithm runs in polynomial time and that it is a 2-
approximation algorithm. It is easy to see that the running-time is polynomial. We
have a loop that repeats |E| times, and in each iteration, we do at most O(|E|) steps. So
the total cost of the loop is O(|E|2). The construction of S takes O(|V |) steps, so in total,
the algorithm runs in polynomial time.

Now we argue that the algorithm is a 2-approximation algorithm. To do this, we
need to argue that

• (i) S is indeed a valid vertex-cover,

• (ii) if S∗ is a vertex cover of minimum size, then |S| ≤ 2|S∗|.

For (i), notice that the M constructed by the algorithm is a maximal matching, i.e.,
there is no edge e ∈ E such that M ∪ {e} is a matching. This implies that the set S is
indeed a valid vertex-cover because if it was not a vertex cover, and e was an edge not
covered by S, then M ∪ {e}would be a matching, contradicting the maximality of M .

For (ii), a convenient lower bound on |S∗| is given by Lemma (Vertex cover vs matching):
for any matching M , |S∗| ≥ |M |. Observe that |S| = 2|M |. Putting the two together, we
get |S| ≤ 2|S∗| as desired.

Exercise (Optimality of the analysis of Gavril’s Algorithm). Describe an infinite family
of graphs for which the above algorithm returns a vertex cover which has twice the size
of a minimum vertex cover.

Solution. For any n ≥ 1, consider a perfect matching with 2n vertices (i.e. a set of
n disjoint edges). Then the algorithm would output all the 2n vertices as the vertex
cover. However, there is clearly a vertex cover of size n (for each edge, pick one of
its endpoints). This argument shows that our analysis in the proof of Theorem (2-
Approximation for MIN-VC) is tight. The algorithm is not better than a 2-approximation

3

CMU CS251 Spring 2022

algorithm. In fact, note that just taking G to be a single edge allows us to conclude that
the algorithm cannot be better than a 2-approximation algorithm (why?). We did not
need to specify an infinite family of graphs.

Answer to ‘why?’: if the algorithm was a (2 − ε)-approximation algorithm for some
ε > 0, then for all inputs, the output of the algorithm would have to be within (2− ε) of
the optimum. Therefore a single example where the gap is exactly factor 2 is enough to
establish that the algorithm is not a (2− ε)-approximation algorithm. �

Exercise (Maximal vs maximum matching in Gavril’s algorithm). In Gavril’s algorithm
we output the vertices of a maximal matching. Suppose that instead, we output the
vertices of a maximum matching. Is this algorithm still a 2-approximation algorithm?

Solution. Yes, the exact same analysis still goes through. �

Definition (Max-cut problem). Let G = (V,E) be a graph. Given a coloring of the ver-
tices with 2 colors, we say that an edge e = {u, v} is a cut edge if u and v are colored
differently. In the max-cut problem, the input is a graph G, and the output is a coloring
of the vertices with 2 colors that maximizes the number of cut edges. We denote this
problem by MAX-CUT.

Theorem ((1/2)-Approximation for MAX-CUT). There is a polynomial-time 1
2 -approximation

algorithm for the optimization problem MAX-CUT.

Proof. Here is the algorithm:

def A(〈graph G = (V,E)〉) :

1. Color every vertex with the same color.

2. c = 0 (number of cut edges).

3. While ∃v ∈ V such that changing v’s color increases number of cut edges:

4. Change v’s color. Update c.

5. Return the coloring.

We first argue that the algorithm runs in polynomial time. Note that the maximum
number of cut edges possible is |E|. Therefore the loop repeats at most |E| times. In each
iteration, the number of steps we need to take is at most O(|V |2) since we can just go
through every vertex once, and for each one of them, we can check all the edges incident
to it. So in total, the number of steps is polynomial in the input length.

We now show that the algorithm is a 1
2 -approximation algorithm. It is clear that

the algorithm returns a valid coloring of the vertices. Therefore, if c is the number of cut
edges returned by the algorithm, all we need to show is that c ≥ 1

2OPT(〈G〉). We will use
the trivial upper bound of m (the total number of edges) on OPT(〈G〉), i.e. OPT(〈G〉) ≤
m. So our goal will be to show c ≥ 1

2m.
Observe that in the coloring that the algorithm returns, for each v ∈ V , at least

deg(v)/2 edges incident to v are cut edges. To see this, notice that if there was a ver-
tex such that this was not true, then we could change the color of the vertex to obtain a
solution that has strictly more cut edges, so our algorithm would have changed the color
of this vertex. From Theorem (??), we know that when we count the number of edges of
a graph by adding up the degrees of all the vertices, we count every edge exactly twice,
i.e. 2m =

∑
v deg(v). In a similar way we can count the number of cut edges, which

implies 2c ≥
∑

v deg(v)/2. The RHS of this inequality is equal to m, so we have c ≥ 1
2m,

as desired.

4

CMU CS251 Spring 2022

Definition (Traveling salesperson problem (TSP)). In the Traveling salesperson problem,
the input is a connected graph G = (V,E) together with edge costs c : E → N. The
output is a Hamiltonian cycle that minimizes the total cost of the edges in the cycle, if
one exists.

A popular variation of this problem is called METRIC-TSP. In this version of the prob-
lem, instead of outputting a Hamiltonian cycle of minimum cost, we output a “tour” that
starts and ends at the same vertex and visits every vertex of the graph at least once (so
the tour is allowed to visit a vertex more than once). In other words, the output is a
list of vertices vi1 , vi2 , . . . , vik , vi1 such that the vertices are not necessarily unique, all the
vertices of the graph appear in the list, any two consecutive vertices in the list form an
edge, and the total cost of the edges is minimized.

Theorem (2-Approximation for METRIC-TSP). There is a polynomial-time 2-approximation
algorithm for METRIC-TSP.

Proof. The algorithm first computes a minimum spanning tree, and then does a depth-
first search on the tree starting from an arbitrary vertex. More precisely:

def A(〈graph G = (V,E), function c : E → N〉) :

1. Compute a MST T of G.

2. Let v be an arbitrary vertex in V .

3. Let L be an empty list.

4. Run DFS(〈T, v〉).
def DFS(〈graph G = (V,E), vertex v ∈ V 〉) :

1. Mark v as visited.

2. Add v to L.

3. For each neighbor u of v:

4. If u is not marked visited, run DFS(〈G, u〉).
5. Add v to L.

5. Return L.

This is clearly a polynomial-time algorithm since computing a minimum spanning
tree (Theorem (??)) and doing a depth-first search both take polynomial time.

To see that the algorithm outputs a valid tour, note that it visits every vertex (since T
is a spanning tree), and it starts and ends at the same vertex v.

Let c(L) denote the total cost of the tour that the algorithm outputs. Let L∗ be a
optimal solution (so c(L∗) = OPT(〈G, c〉)). Our goal is to show that c(L) ≤ 2c(L∗). The
graph induced by L∗ is a connected graph on all the vertices. Let T ∗ be a spanning tree

5

CMU CS251 Spring 2022

within this induced graph. It is clear that c(L∗) ≥ c(T ∗) and this will be the convenient
lower bound we use on the optimum. In other words, we’ll show c(L) ≤ 2c(T ∗). Note
that c(L) = 2c(T) since the tour uses every edge of T exactly twice. Furthermore, since T
is a minimum spanning tree, c(T) ≤ c(T ∗). Putting these together, we have c(L) ≤ 2c(T ∗),
as desired.

Exercise (Another MIN-VC approximation). Consider the following approximation al-
gorithm to find minimum vertex cover in a connected graph G: run the DFS algorithm
starting from some arbitrary vertex in the graph, and then output the set S consisting of
the non-leaf vertices of the DFS tree (where the root does not count as a leaf even if it has
degree 1). Show that this algorithm is a 2-approximation algorithm for MIN-VERTEX-
COVER.

Hint. Show that G has a matching of size at least |S|/2.

Solution. To establish that the given algorithm is a 2-approximation algorithm for MIN-
VC, we need to argue that

• (i) S is indeed a valid vertex-cover,

• (ii) if S∗ is a vertex cover of minimum size, then |S| ≤ 2|S∗|.

To prove (i) we claim that every edge in the graph is such that either both endpoints are
in S, or one endpoint is a leaf (i.e. in V \S) and the other is in S. Note that this claim
implies S is a vertex cover. And the claim is true because there cannot be an edge in the
DFS tree with both endpoints being a leaf: If two leaves were to be connected, one leaf
would have to be a child of the other leaf, but a leaf cannot have a child.

To prove (ii), we want to argue that |S| ≤ 2|S∗|. We will follow the same strategy as in
the analysis of Gavril’s algorithm for MIN-VC: we will use the fact that for any matching
M in the graph, |M | ≤ |S∗|. And to establish the approximation ratio, we’ll show that
there exists a matching M such that |S|/2 ≤ |M |. Putting these two inequalities together
we get what we want: |S|/2 ≤ |S∗|, i.e. |S| ≤ 2|S∗|.

So the only thing that remains to be shown is that there exists a matching M such
that |M | ≥ |S|/2. To establish this, we’ll show that we can find a matching M in which
every vertex in S is matched. If this is true, then it follows that |M | ≥ |S|/2.

We can show that such an M exists algorithmically: take the root of the DFS tree and
match it with any one of its children. Remove these two nodes from the tree since they
are already matched. Now we are left with a forest (collection of trees). We continue
in the same way for each of the trees left. We can always match the root to one of its
children if the tree has at least two vertices. And if we get a tree with only one node,
then notice that it must be a leaf in the original DFS tree, so we don’t need to match
it. �

3 Check Your Understanding

Problem. 1. Describe the high-level steps for showing/proving that a certain mini-
mization problem has an α-approximation algorithm.

2. What does it mean for an algorithm to be a 1/2-approximation algorithm for the
MAX-CLIQUE problem?

3. What is the relationship between a matching and a vertex cover in a graph? How
does the size of a matching compare to the size of a vertex cover?

4. Describe Gavril’s approximation algorithm for MIN-VERTEX-COVER.

5. Explain at a high level why Gavril’s approximation algorithm has an approxima-
tion ratio of 2.

6

CMU CS251 Spring 2022

6. Describe a deterministic polynomial-time 1/2-approximation algorithm for MAX-
CUT.

7. Explain at a high level why the above algorithm has an approximation ratio of 1/2.

8. Describe a polynomial-time 2-approximation algorithm for METRIC-TSP.

9. Explain at a high level why the approximation algorithm for METRIC-TSP that we
have seen has an approximation ratio of 2.

10. Suppose you have an α-approximation algorithm for some minimization prob-
lem. At a high level, how can you show that your algorithm is not a (α − ε)-
approximation algorithm for any ε > 0?

11. True or false: The approximation algorithm for METRIC-TSP that we have seen in
this chapter is not a (2− ε)-approximation algorithm for any constant ε > 0.

12. True or false: Suppose A is an α-approximation algorithm for the MAX-CLIQUE
problem for some α < 1. Then it must be the case that for all input graphs G =
(V,E), the size of the clique returned by A is at least α · |V |.

13. True or false: Let A1 be a 2-approximation algorithm for MIN-VC, and let A2 be
a 4-approximation algorithm for MIN-VC. Define a new approximation algorithm
A3 that runs A1 and A2 on the given MIN-VC instance, and outputs the smaller
among the two vertex covers they find. Then A3 is a 2-approximation algorithm.

14. True or we don’t know: Suppose A is a polynomial-time algorithm for MIN-VC
such that the output ofA is within a factor of 1.9 of the optimum for all but 251 pos-
sible inputs. Then we cannot say that A is a 1.9-approximation algorithm for MIN-
VC. But we can conclude that there exists a polynomial-time 1.9-approximation
algorithm for MIN-VC.

15. True or false: It is possible for the approximation ratio of an approximation algo-
rithm to depend on the input length n.

4 High-Order Bits

Important. 1. The difference between decision problems and optimization problems
is important to understand. However, the formal definition of optimization prob-
lem will not be very useful. In the context of specific optimization problems, it will
be clear what an optimum solution represents. And this will really be all we need.

2. Internalize the important note on “Analyzing approximation algorithms”, and ob-
serve it in action within the proofs in this chapter. In particular, you want to be
comfortable with how one goes about establishing the approximation guarantee
of a given algorithm.

3. Make sure you understand how to establish that a certain algorithm is not an α-
approximation algorithm. In particular, understanding the solution to Exercise
(Optimality of the analysis of Gavril’s Algorithm) is very important.

4. In general, coming up with approximation algorithms can be tricky. Any algorithm
that is slightly non-trivial can be very hard to analyze. Therefore, often approxi-
mation algorithms are quite simple so that the approximation guarantee can be
proved relatively easily. If you are asked to come up with an approximation algo-
rithm, keep this note in mind.

7

	Basic Definitions
	Examples of Approximation Algorithms
	Check Your Understanding
	High-Order Bits

