
Non-Deterministic Polynomial
Time

1 Non-Deterministic Polynomial Time NP

Definition (Non-deterministic polynomial time, complexity class NP). Fix some alpha-
bet Σ. We say that a language L can be decided in non-deterministic polynomial time if
there exists

1. a polynomial-time decider TM V that takes two strings as input, and

2. a constant k > 0,

such that for all x ∈ Σ∗:

• if x ∈ L, then there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts,

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

If x ∈ L, a string u that makes V (x, u) accept is called a proof (or certificate) of x being in
L. The TM V is called a verifier.

We denote by NP the set of all languages which can be decided in non-deterministic
polynomial time.

Proposition (3COL is in NP). 3COL ∈ NP.

Proof. To show 3COL is in NP, we need to show that there is a polynomial-time verifier
TMAwith the properties stated in Definition (Non-deterministic polynomial time, com-
plexity class NP) (we are using A to denote the verifier and not V because we will use V

1

CMU CS251 Spring 2022

to denote the vertex set of a graph). Recall that an instance of the 3COL problem is an
undirected graph G. The description of A is as follows.

def A(〈graph G = (V,E)〉, u) :

1. If u does not correspond to a 3-coloring of V , reject.

2. If there is {v, w} ∈ E where v and w have the same color, reject.

3. Else, accept.

We now show thatA satisfies the two conditions stated in Definition (Non-deterministic
polynomial time, complexity class NP). If x is in the language, that means x is a valid
encoding of a graph G = (V,E) and this graph is 3-colorable. When u is a 3-coloring
of V , |u| = O(|V |). And for this x and u, the verifier accepts. On the other hand, if x
is not in the language, then either (i) x is not a valid encoding of a graph or (ii) it is a
valid encoding of a graph which is not 3-colorable. In case (i), the verifier rejects (which
is done implicitly since the input is not of the correct type). In case (ii), any u that does
not correspond to a 3-coloring of the vertices makes the verifier reject. Furthermore, any
u that does correspond to a 3-coloring of the vertices must be such that there is an edge
whose endpoints are colored with the same color. Therefore, in this case, the verifier
again rejects, as desired.

Now we show that the machine is polynomial-time. To check whether u is a 3-
coloring of the vertices takes polynomial time since you just need to check that you are
given |V | colors, each being one of 3 colors. To check that it is indeed a legal 3-coloring
is polynomial time as well since you just need to go through every edge once and check
for each that the endpoints are different colors.

This completes the proof that 3COL is in NP.

Note (Steps to show a languages is in NP). Showing that a language L is in NP involves
the following steps:

1. Present a TM V (that takes two inputs x and u).

2. Argue that V has polynomial running time.

3. Argue that V works correctly, which involves arguing the following for some con-
stant k > 0:

• for all x ∈ L, there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts;

• for all x 6∈ L and for all u ∈ Σ∗, V (x, u) rejects.

Proposition (CIRCUIT-SAT is in NP). CIRCUIT− SAT ∈ NP.

Proof. To show CIRCUIT-SAT is in NP, we need to show that there is a polynomial-time
verifier V with the properties stated in Definition (Non-deterministic polynomial time,
complexity class NP). We start by presenting V .

def V (〈circuit C〉, u) :

1. If u does not correspond to a 0/1 assignment to input gates, reject.

2. Compute the output of the circuit C(u).

3. If the output is 0, reject.

4. Else, accept.

2

CMU CS251 Spring 2022

We first show that the verifier V satisfies the two conditions stated in Definition (Non-
deterministic polynomial time, complexity class NP). If x is in the language, that means
that x corresponds to a valid encoding of a circuit and there is some 0/1-assignment to
the input gates that makes the circuit output 1. When u is such a 0/1-assignment, then
|u| = O(n) (where n is the length of x), and the verifier accepts the input (x, u). On the
other hand, if x is not in the language, then either (i) x is not a valid encoding of a circuit
or (ii) it is a valid encoding of a circuit which is not satisfiable. In case (i), the verifier
rejects (which is done implicitly since the input is not of the correct type). In case (ii),
any u that does not correspond to a 0/1-assignment to the input gates makes the verifier
reject. Furthermore, any u that does correspond to a 0/1-assignment to the input gates
must be such that, with this assignment, the circuit evaluates to 0. Therefore, in this case,
the verifier again rejects, as desired.

Now we show the verifier is polynomial-time. To check whether u is a valid 0/1-
assignment to the input gates takes polynomial time since you just need to check that
you are given t bits, where t is the number of input gates. The output of the circuit can
be computed in polynomial time since it takes constant number of steps to compute each
gate.

This completes the proof of CIRCUIT-SAT is in NP.

Exercise (CLIQUE is in NP). Show that CLIQUE ∈ NP.

Solution. To show CLIQUE is in NP, we need to show that there is a polynomial-time
verifier A with the properties stated in Definition (Non-deterministic polynomial time,
complexity class NP). We start by presenting A. (We are using A to denote the verifier
and not V because we will use V to denote the vertex set of a graph.)

def A(〈graph G = (V,E),positive natural k〉, u) :

1. If u does not correspond to a set S ⊆ V with |S| = k, reject.

2. For each pair of vertices u, v in S:

3. If {u, v} 6∈ E, reject.

4. Accept.

We first show that the verifierA satisfies the two conditions stated in Definition (Non-
deterministic polynomial time, complexity class NP). If x is in the language, that means
that x corresponds to a valid encoding of a graph G = (V,E) together with a number
k ∈ N. Furthermore, it must be the case that there is some S ⊆ V with |S| = k such
that S forms a k-clique. When u is the encoding of such an S, then |u| = O(n) where n
is the length of x, and the verifier A accepts (x, u). On the other hand, if x is not in the
language, then either (i) x is not a valid encoding of a graph G = (V,E) together with
a number k ∈ N or (ii) it is a valid encoding 〈G, k〉, but there is no S ⊆ V , |S| = k, that
forms a k-clique. In case (i), the verifier rejects (which is done implicitly since the input
is not of the correct type). In case (ii), any u that does not correspond to a set S ⊆ V with
|S| = k makes the verifier reject. Furthermore, any u that does correspond to such an S
cannot form a k-clique. In this case, the for loop will detect this and the verifier again
rejects, as desired.

Now we show the verifier is polynomial-time. Checking whether u is a valid en-
coding of a set S ⊆ V with |S| = k is polynomial time. If this check passes, then the
for-loop repeats at most O(|V |2) many times, and the body of the loop can be carried out
in polynomial time. So in total, the work being done is polynomial time. �

Exercise (IS is in NP). Show that IS ∈ NP.

3

CMU CS251 Spring 2022

Solution. The argument is very similar to the one above. Here is the verifier:

def A(〈graph G = (V,E),positive natural k〉, u) :

1. If u does not correspond to a set S ⊆ V with |S| = k, reject.

2. For each pair of vertices u, v in S:

3. If {u, v} ∈ E, reject.

4. Accept.

We skip the arguments for correctness and running time. �

Exercise (3SAT is in NP). Show that 3SAT ∈ NP.

Solution. To show 3SAT is in NP, we need to show that there is a polynomial-time verifier
V with the properties stated in Definition (Non-deterministic polynomial time, complex-
ity class NP). We start by presenting V .

def V (〈3CNF formula F 〉, u) :

1. If u does not correspond to a 0/1 assignment to the variables in F, reject.

2. Compute the output of the formula F (u).

3. If the output is 0, reject.

4. Else, accept.

We first show that the verifier V satisfies the two conditions stated in Definition (Non-
deterministic polynomial time, complexity class NP). If x is in the language, that means
that x corresponds to a valid encoding of a 3CNF formula. Furthermore, there is some
0/1-assignment to the variables that makes the formula output 1. When u is this 0/1-
assignment, then |u| = O(n) (where n is the length of x), and the verifier accepts the
input (x, u). On the other hand, if x is not in the language, then either (i) x is not a
valid encoding of a CNF formula in which every clause has exactly 3 literals or (ii) it is a
valid encoding but the formula is not satisfiable. In case (i), the verifier rejects (which is
done implicitly since the input is not of the correct type). In case (ii), any u that does not
correspond to a 0/1-assignment to the variables makes the verifier reject. Furthermore,
any u that does correspond to a 0/1-assignment to the variables must be such that, with
this assignment, the formula evaluates to 0. Therefore, in this case, the verifier again
rejects, as desired.

Now we show the verifier is polynomial-time. To check whether u is a valid 0/1-
assignment to the variables takes polynomial time since you just need to check that you
are given t bits, where t is the number of variables. The output of the formula can be
computed in polynomial time since it takes constant number of steps to compute each
clause (and the number of clauses is bounded by the length of the input). �

Proposition (P is contained in NP). P ⊆ NP.

Proof. Given a language L ∈ P, we want to show that L ∈ NP. Since L is in P, we know
that there is a polynomial-time decider M that decides L. To show that L ∈ NP, we need
to describe a polynomial-time verifier V that has the properties described in Definition
(Non-deterministic polynomial time, complexity class NP). The description of V is as
follows.

4

CMU CS251 Spring 2022

def V (x, u) :

1. Return M(x).

First, note that since M is a polynomial time decider, the line running M(x) takes
polynomial time, and so V is polynomial-time. We now check that V satisfies the two
conditions stated in Definition (Non-deterministic polynomial time, complexity class
NP). If x ∈ L, then M(x) accepts, so for any u, V (x, u) accepts. For example, V (x, ε)
accepts, and clearly |ε| = 0 ≤ |x|. If x 6∈ L, then M(x) rejects, so no matter what u is,
V (x, u) rejects, as desired. This shows that L ∈ NP.

Definition (Complexity class EXP). We denote by EXP the set of all languages that can
be decided in at most exponential-time, i.e., in time O(2n

C

) for some constant C > 0.

Exercise (NP is contained in EXP). Show that NP ⊆ EXP.

Solution. To show NP ⊆ EXP, it suffices to argue that any L ∈ NP is also in EXP. So take
an arbitraryL ∈ NP. By the definition of NP we know that there is some polynomial-time
verifier TM V and constant k > 0 such that for all x ∈ Σ∗:

• if x ∈ L, then there is some u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts;

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

We construct a decider A for L as follows.

def A(x) :

1. For all u ∈ Σ∗ with |u| ≤ |x|k:
2. Run V (x, u) and if it accepts, accept.

3. Reject

Correctness: If x ∈ L, then we know that for some u ∈ Σ∗ with |u| ≤ |x|k, V (x, u)
accepts. Therefore A accepts as well. If on the other hand x 6∈ L, then for all u ∈ Σ∗,
V (x, u) rejects. Therefore A rejects as well.

Running time: The running time of A is O(2n
C

) for an appropriately chosen constant
C. We omit the details of this part. �

2 NP-complete problems

Note (NP-hardness and NP-completeness). Recall Definition (??). We use this defini-
tion in this section with C being NP. However, our notions of NP-hardness and NP-
completeness will be restricted to Karp reductions. As mentioned in Note (??), hardness
and completeness is often defined using Karp reductions. We may explore some of the
reasons for this in a homework problem.

Important (Use Karp reductions for NP-hardness). To show that a language is NP-hard,
you should be using Karp reductions.

Theorem (Cook-Levin Theorem). CIRCUIT− SAT is NP-complete.

Note. Cook and Levin actually proved that SAT is NP-complete, however, the theorem is
often stated using CIRCUIT− SAT rather than SAT because the version above is easier
to prove.

5

CMU CS251 Spring 2022

Important (Showing a language is NP-hard). To show that a language L is NP-hard, by
the transitivity of polynomial-time reductions, it suffices to show that K ≤P

m L for some
language K which is known to be NP-hard. In particular, using Theorem (Cook-Levin
Theorem), it suffices to show that CIRCUIT− SAT ≤P

m L.

Theorem (3COL is NP-complete). 3COL is NP-complete.

Proof. We have already done all the work to prove that 3COL is NP-complete. First of all,
in Proposition (3COL is in NP), we have shown that 3COL ∈ NP. To show that 3COL is
NP-hard, by the transitivity of reductions, it suffices to show that CIRCUIT− SAT ≤P

m

3COL, which we have done in Theorem (??).

Theorem (3SAT is NP-complete). 3SAT is NP-complete.

Proof Sketch. We sketch the main ideas in the proof. To show that 3SAT is NP-complete,
we have to show that it is in NP and it is NP-hard. We leave the proof of membership in
NP as an exercise.

To show that 3SAT is NP-hard, by the transitivity of reductions, it suffices to show
that CIRCUIT− SAT ≤P

m 3SAT. Given an instance of CIRCUIT− SAT, i.e. a Boolean
circuit C, we will construct an instance of 3SAT, i.e. a Boolean CNF formula ϕ in which
every clause has exactly 3 literals. The reduction will be polynomial-time and will be
such that C is a Yes instance of CIRCUIT− SAT (i.e. C is satisfiable) if and only if ϕ is a
Yes instance of 3SAT (i.e. ϕ is satisfiable).

The construction is as follows. A circuit C has three types of gates (excluding the
input-gates): NOT, OR, AND.

We will convert each such gate of the circuit C into a 3SAT formula. It is easy to verify
that

yi = ¬xi ⇐⇒ (xi ∨ yi) ∧ (¬xi ∨ ¬yi),
yk = xi ∨ xj ⇐⇒ (yk ∨ ¬xi) ∧ (yk ∨ ¬xj) ∧ (¬yk ∨ xi ∨ xj),
yk = xi ∧ xj ⇐⇒ (¬yk ∨ xi) ∧ (¬yk ∨ xj) ∧ (yk ∨ ¬xi ∨ ¬xj).

So the behavior of each gate can be represented using a Boolean formula. As an example,
consider the circuit below.

6

CMU CS251 Spring 2022

In this case, we would let

ϕ1 = (x1 ∨ y1) ∧ (¬x1 ∨ ¬y1)

ϕ2 = (¬y2 ∨ x2) ∧ (¬y2 ∨ x3) ∧ (y2 ∨ ¬x2 ∨ ¬x3)

ϕ3 = (y3 ∨ ¬y1) ∧ (y3 ∨ ¬y2) ∧ (¬y3 ∨ y1 ∨ y2),

and the Boolean formula equivalent to the circuit would be

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ y3.

This is not quite a 3SAT formula since each clause does not necessarily have exactly 3
literals. However, each clause has at most 3 literals, and every clause in the formula can
be converted into a clause with exactly 3 literals by duplicating a literal in the clause if
necessary.

This completes the description of how we construct a 3SAT formula from a Boolean
circuit. We leave it as an exercise to the reader to verify that C is satisfiable if and only if
ϕ is satisfiable, and that the reduction can be carried out in polynomial time.

Theorem (CLIQUE is NP-complete). CLIQUE is NP-complete.

Proof. To show that CLIQUE is NP-complete, we have to show that it is in NP and it is
NP-hard. Exercise (CLIQUE is in NP) asks you to show that CLIQUE is in NP, so we will
show that CLIQUE is NP-hard by presenting a reduction from 3SAT to CLIQUE.

Our reduction will be a Karp reduction. Given an instance of 3SAT, i.e. a Boolean
formula ϕ, we will construct an instance of CLIQUE, 〈G, k〉 where G is a graph and k is
a number, such that ϕ is a Yes instance of 3SAT (i.e. ϕ is satisfiable) if and only if 〈G, k〉
is a Yes instance of CLIQUE (i.e. G contains a k-clique). Furthermore, this construction
will be done in polynomial time.

Let
ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (am ∨ bm ∨ cm),

where each ai, bi and ci is a literal, be an arbitrary 3SAT formula. Notice that ϕ is satis-
fiable if and only if there is a truth assignment to the variables so that each clause has at
least one literal set to True. From this formula, we build a graph G as follows. For each
clause, we create 3 vertices corresponding to the literals of that clause. So in total the
graph has 3m vertices. We now specify which vertices are connected to each other with
an edge. We do not put an edge between two vertices if they correspond to the same
clause. We do not put an edge between xi and ¬xi for any i. Every other pair of vertices
is connected with an edge. This completes the construction of the graph. We still need
to specify k. We set k = m.

As an example, if ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ ¬x1), then the
corresponding graph is as follows:

We now prove that ϕ is satisfiable if and only if G has a clique of size m. If ϕ is
satisfiable, then there is an assignment to the variables such that in each clause, there is
at least one literal set to True. We claim that the vertices that correspond to these literals
form a clique of size m in G. It is clear that the number of such vertices is m. To see that
they form a clique, notice that the only way two of these vertices do not share an edge

7

CMU CS251 Spring 2022

is if they correspond to xi and ¬xi for some i. But a satisfying assignment cannot assign
True to both xi and ¬xi.

For the other direction, suppose that the constructed graph G has a clique K of size
m. Since there are no edges between two literals if they are in the same clause, there
must be exactly one vertex from each clause in K. We claim that we can set the literals
corresponding to these vertices to True and therefore show that ϕ is satisfiable. To see
this, notice that the only way we could not simultaneously set these literals to True is
if two of them correspond to xi and ¬xi for some i. But there is no edge between such
literals, so they cannot both be in the same clique.

This completes the correctness of the reduction. We still have to argue that it can be
done in polynomial time. This is rather straightforward. Creating the vertex set of G
is clearly polynomial-time since there is just one vertex for each literal of the Boolean
formula. Similarly, the edges can be easily added in polynomial time as there are at most
O(m2) many of them.

Note. When we want to show that a language B is NP-hard, we take a known NP-
hard language A and show a Karp reduction from A to B. The diagram of a typical
transformation is as shown below.

So typically, the transformation does not cover all the elements of B, but only a subset
B′ ⊂ B. This means that the Karp reduction not only establishes that B is NP-hard, but
also that B′ is NP-hard.

Theorem (IS is NP-complete). IS is NP-complete.

Proof. To show that IS is NP-complete, we have to show that it is in NP and it is NP-hard.
Exercise (IS is in NP) asks you to show that IS is in NP, so we show that IS is NP-hard. By
Theorem (CLIQUE is NP-complete), we know that CLIQUE is NP-hard, and by Theorem
(??) we know that CLIQUE ≤P

m IS. By the transitivity of reductions, we conclude that IS
is also NP-hard.

Note (Overview of reductions). The collection of reductions that we have shown can be
represented as follows:

8

CMU CS251 Spring 2022

Exercise (MSAT is NP-complete). The MSAT problem is defined very similarly to SAT
(for the definition of SAT, see Definition (??)). In SAT, we output True if and only if
the input CNF formula has at least one satisfying truth assignment to the variables. In
MSAT, we want to output True if and only if the input CNF formula has at least two
distinct satisfying assignments.

Show that MSAT is NP-complete.

Solution. Showing MSAT is in NP: To show that MSAT is in NP, we need to show that
there is a polynomial time verifier TM V and t ∈ N such that:

1. if x ∈MSAT, then there is some u, |u| ≤ |x|t, such that V (x, u) accepts;

2. if x 6∈MSAT, then for all u, V (x, u) rejects.

We present the verifier.

def V (〈CNF formula F 〉, u) :

1. If u does not correspond to two distinct 0/1 assignments to the variables in F, reject.

2. If both assignments in u satisfy F, accept.

3. Else, reject.

The verifier is polynomial time: Checking whether u a valid encoding of two distinct
0/1 assignments to the input variables can be done in polynomial time. Given a 0/1
assignment to the input variables, we can plug those values into the input CNF formula,
and evaluate the output of the formula. This can be done in polynomial time. Since
every step can be done in polynomial time, the verifier has polynomial time complexity.

Correctness: If x ∈ MSAT, then x must a valid encoding of a CNF formula F . Fur-
thermore, F must be such that there are at least two distinct 0/1 assignments to the input
variables that make F evaluate to 1. When u is the encoding of such two distinct 0/1 as-
signments, the verifier will accept as desired. Note that clearly for such a u, |u| ≤ O(|F |),
i.e., the proof is polynomial in the length of F . If x 6∈ MSAT, then either x is not a valid
encoding of a CNF formula (in which case the verifier rejects, which is done implicitly
since the input is not of the correct type), or x is a valid encoding of a CNF formula, but
there is at most one 0/1 assignment to the input variables that makes the formula output
1. In the latter case, if u is not the encoding of two distinct 0/1 assignments, we reject.
And if it is, then the last step detects that at least one of these 0/1 assignments makes the
formula output 0, and so the verifier rejects again, as desired.

Showing MSAT is NP-hard: To show that MSAT is NP-hard, we show a Karp reduc-
tion from SAT (which we know is NP-hard because we have shown 3SAT is NP-hard)
to MSAT. To show the Karp reduction, we need to show that there is a polynomial-time
computable function f : Σ∗ → Σ∗ such that x ∈ SAT if and only if f(x) ∈ MSAT. Here
is the function.

def f(〈CNF formula F 〉) :

1. Let z be a variable name not included in F.

2. F ′ = F ∧ (z ∨ ¬z).
3. Return 〈F ′〉.

Polynomial time: It is pretty clear that each step above can be carried out in polyno-
mial time (with respect to the length of F).

Correctness: Suppose x ∈ SAT. Then x = 〈F 〉 for some satisfiable CNF formula F .
Let y1, . . . , yn be the variables in F . And suppose y1 = b1, . . . , yn = bn is a satisfying
assignment for F , where bi ∈ {0, 1} for all i. Then observe that both y1 = b1, . . . , yn =

9

CMU CS251 Spring 2022

bn, z = 0 and y1 = b1, . . . , yn = bn, z = 1 are satisfying assignments for F ′, and so
〈F ′〉 ∈MSAT. For the converse, assume 〈F ′〉 ∈MSAT. This means F ′ = (F ∧ (z∨¬z)) =
(F ∧ True) is satisfiable, which implies F must satisfiable. So x = 〈F 〉 ∈ SAT. �

Exercise (BIN is NP-complete). In the PARTITION problem, we are given n non-negative
integers a1, a2, . . . , an, and we want to output True if and only if there is a way to par-
tition the integers into two parts so that the sum of the two parts are equal. In other
words, we want to output True if and only if there is set S ⊆ {1, 2, . . . , n} such that∑

i∈S ai =
∑

j∈{1,...,n}\S aj .
In the BIN problem we are given a set of n items with non-negative sizes s1, s2, . . . , sn ∈

N (not necessarily distinct), a capacity C ≥ 0 (not necessarily an integer), and an integer
k ∈ N. We want to output True if and only if the items can be placed into at most k bins
such that the total size of items in each bin does not exceed the capacity C.

Show that BIN is NP-complete assuming PARTITION is NP-hard.

Solution. Showing BIN is in NP: To show that BIN is in NP, we need to show that there
is a polynomial time verifier TM V and t ∈ N such that:

1. if x ∈ BIN, then there is some u, |u| ≤ |x|t, such that V (x, u) accepts;

2. if x 6∈ BIN, then for all u, V (x, u) rejects.

We now present the verifier. Below, s1, s2, . . . , sn and k are non-negative integers and
C is a non-negative real.

def V (〈s1, s2, . . . , sn, C, k〉, u) :

1. If k > n, set k = n.

2. If u does not correspond to a partition (B1, B2, . . . , Bk) of {1, 2, . . . , n}, reject.

3. If for some j ∈ {1, 2, . . . , k},
∑
i∈Bj

si > C, reject.

4. Else, accept.

The verifier is polynomial time: (First note that the n in the question does not denote
the input length. When we say “polynomial time”, it is with respect to the input length,
which is |〈s1, s2, . . . , sn, C, k〉| + |u|.) Checking that u is a partition of {1, . . . , n} into k
parts, we need to check that there are k sets, their union is {1, . . . , n}, and that they are
pair-wise disjoint. All of these can be easily checked in polynomial time. In the 3rd step,
we implicitly have a loop that repeats k ≤ n times. In each iteration, we do at most n
additions, which is polynomial time in the input length (even if the si’s are super big,
note that they are part of the input and contribute to the length; addition is polynomial
time).

Correctness: If x ∈ BIN, then first, it must be a valid encoding. Furthermore, there
must be a partition (B1, . . . , Bk) of {1, . . . , n} such that for each j = 1, ..., k,

∑
i∈Bj

si ≤ C
(this is true by the definition of the problem). When u represents such a partition, the
verifier correctly accepts. Such a u has length polynomial in n, and therefore polynomial
in the input length, as desired.

If x 6∈ BIN, then either x is an invalid encoding (in which case the verifier rejects,
which is done implicitly since the input is not of the correct type), or x is a valid en-
coding, but there is no way to partition the elements into k bins (B1, . . . , Bk) such that∑

i∈Bj
si ≤ C for all bins. If u does not correspond to a partition (B1, . . . , Bk), then we

reject. And if it does, we successfully reject on the 3rd step. This completes the correct-
ness argument.

Showing BIN is NP-hard: To show that BIN is NP-hard, we show a Karp reduction
from PARTITION to BIN. To show the Karp reduction, we need to show that there is a

10

CMU CS251 Spring 2022

polynomial time computable function f : Σ∗ → Σ∗ such that x ∈ PARTITION if and
only if f(x) ∈ BIN.

We now present f . Below a1, a2, . . . , an are non-negative integers.

def f(〈a1, a2, . . . , an〉) :

1. Let si = ai for all i.

2. Let T =
∑

i∈{1,2,...,n}

si.

3. Let C = T/2.

4. Let k = 2.

5. Return 〈s1, s2, . . . , sn, C, k〉.

Polynomial time: Addition and division are polynomial time operations and we only
do these operations polynomially many times. So the whole function is polynomial time
computable.

Correctness: If x is in PARTITION, then x = 〈a1, a2, . . . , an〉 for non-negative in-
tegers ai, and there is S ⊂ {1, . . . , n} such that

∑
i∈S ai =

∑
j∈{1,...,n}\S aj . Let T =∑

i∈{1,...,n} ai be the total sum. Then we must have∑
i∈S

ai =
∑

j∈{1,...,n}\S

aj = T/2.

If we let B1 = S and B2 = {1, . . . , n}\S, we see that the elements can be partitioned into
two bins of capacity T/2. Therefore the output f(x) is indeed an element of BIN.

For the other direction, if the output of the reduction f(x) is an element of BIN, then
there is a way to partition the elements s1 = a1, . . . , sn = an into k = 2 bins B1 and B2

(B1 ∪ B2 = {1, . . . , n}, B1 ∩ B2 = ∅) of capacity C = T/2 = 1
2

∑
i∈{1,...,n} si. Since the

total sum of the elements is T and each element must be in one of the two bins, the two
bins must be completely full, i.e.,

∑
i∈B1

ai = T/2 and
∑

j∈B2
aj = T/2. If we let S = B1,

then {1, . . . , n}\S = B2 and so
∑

i∈S ai =
∑

j∈{1,...,n}\S aj . So x = 〈a1, a2, . . . , an〉 is
indeed in PARTITION. �

3 Check Your Understanding

Problem. 1. Informally, at a high-level, what does it mean for a language to be in
NP?

2. Give an example of a language in NP and at a high level explain why it is in NP.

3. What are the things you need to show in order to formally argue that a language
L is in NP?

4. Why is the complexity class NP named “Non-deterministic polynomial time”?

5. True or false: Every language in NP is decidable.

6. True or false: Any finite language is in NP.

7. True or false: {0, 1}∗ ∈ NP.

8. True or false: {0k1k : k ∈ N} ∈ NP.

9. Explain why P is contained in NP.

10. True or false: If there is a polynomial-time algorithm for 3COL, then P = NP.

11

CMU CS251 Spring 2022

11. True or false: HALTS is NP-complete.

12. Explain why NP is contained in EXP.

13. State the Cook-Levin Theorem and explain its significance.

14. Let L ⊆ Σ∗, and define its complement L = {w ∈ Σ∗ : w 6∈ L}. Define coNP =
{L ⊆ Σ∗ : L ∈ NP}. True or false: If coNP 6= NP, then P 6= NP.

15. True or false: If every language in NP is NP-complete (under Cook reductions) then
P = NP.

16. True or false: If P = NP then every language in NP is NP-complete (under Cook
reductions).

17. True or false: For any two NP-complete languages A and B, there is a Cook reduc-
tion from A to B.

18. True or false: Let L = {0k1k : k ∈ N}. There is a Karp reduction from L to 3COL.

19. Assume P 6= NP. Does 2COL Karp reduce to 3COL?

20. Assume P 6= NP. Does 3COL Karp reduce to 2COL?

4 High-Order Bits

Important. 1. Non-deterministic polynomial time is one of the most important defi-
nitions in the course. The formal definition is not easy to understand at first since it
has several layers. Take your time to really digest it, and be careful with the order
of quantifiers.

2. When we ask you to show that a language is in NP, we expect you to use the formal
definition of NP. Your proofs should resemble the proofs presented in this chapter.

3. It is guaranteed that you will see an NP-completeness proof in the homework and
exam. In this course, your reductions establishing NP-hardness must be Karp re-
ductions. This chapter contains various such arguments, and we expect your own
arguments to follow a similar structure. As usual, do not fall in the trap of memo-
rizing templates. Focus on understanding why the proofs are structured the way
they are.

12

	Non-Deterministic Polynomial Time NP
	NP-complete problems
	Check Your Understanding
	High-Order Bits

