
Introduction to Graph Theory

1 Basic Definitions

Definition (Undirected graph). An undirected graph1 G is a pair (V,E), where

• V is a finite non-empty set called the set of vertices (or nodes),

• E is a set called the set of edges, and every element of E is of the form {u, v} for
distinct u, v ∈ V .

Example (A graph with 6 vertices and 4 edges). Let G = (V,E) where

V = {v1, v2, v3, v4, v5, v6}

and
E = {{v1, v2}, {v1, v3}, {v2, v3}, {v4, v5}}.

We usually draw graphs in a way such that a vertex corresponds to a dot and an edge
corresponds to a line connecting two dots. For example, the graph we have defined can
be drawn as follows:

1Often the word “undirected” is omitted.

1

CMU CS251 Spring 2022

Note (n and m). Given a graph G = (V,E), we usually use n to denote the number of
vertices |V | and m to denote the number of edges |E|.

Important (Representations of graphs). There are two common ways to represent a
graph. Let v1, v2, . . . , vn be some arbitrary ordering of the vertices. In the adjacency matrix
representation, a graph is represented by an n× n matrix A such that

A[i, j] =

{
1 if {vi, vj} ∈ E,
0 otherwise.

The adjacency matrix representation is not always the best representation of a graph.
In particular, it is wasteful if the graph has very few edges. For such graphs, it can be
preferable to use the adjacency list representation. In the adjacency list representation,
you are given an array of size n and the i’th entry of the array contains a pointer to a
linked list of vertices that vertex i is connected to via an edge.

Exercise (Max number of edges in a graph). In an n-vertex graph, what is the maximum
possible value for the number of edges in terms of n?

Solution. An edge is a subset of V of size 2, and there are at most
(
n
2

)
possible subsets of

size 2. �

Definition (Neighborhood of a vertex). Let G = (V,E) be a graph, and e = {u, v} ∈ E
be an edge in the graph. In this case, we say that u and v are neighbors or adjacent. We
also say that u and v are incident to e. For v ∈ V , we define the neighborhood of v, denoted
N(v), as the set of all neighbors of v, i.e. N(v) = {u : {v, u} ∈ E}. The size of the
neighborhood, |N(v)|, is called the degree of v, and is denoted by deg(v).

Example (Example of neighborhood and degree). Consider Example (A graph with 6
vertices and 4 edges). We have N(v1) = {v2, v3}, deg(v1) = deg(v2) = deg(v3) = 2,
deg(v4) = deg(v5) = 1, and deg(v6) = 0.

Definition (d-regular graphs). A graph G = (V,E) is called d-regular if every vertex
v ∈ V satisfies deg(v) = d.

Theorem (Handshake Theorem). Let G = (V,E) be a graph. Then∑
v∈V

deg(v) = 2m.

Proof. Our goal is to show that the sum of the degrees of all the vertices is equal to twice
the number of edges. We will use a double counting argument to establish the equality.
This means we will identify a set of objects and count its size in two different ways. One
way of counting it will give us

∑
v∈V deg(v), and the second way of counting it will give

us 2m. This then immediately implies that
∑

v∈V deg(v) = 2m.
We now proceed with the double counting argument. For each vertex v ∈ V , put

a “token” on all the edges it is incident to. We want to count the total number of to-
kens. Every vertex v is incident to deg(v) edges, so the total number of tokens put is∑

v∈V deg(v). On the other hand, each edge {u, v} in the graph will get two tokens, one
from vertex u and one from vertex v. So the total number of tokens put is 2m. Therefore
it must be that

∑
v∈V deg(v) = 2m.

Exercise (Application of Handshake Theorem). Is it possible to have a party with 251
people in which everyone knows exactly 5 other people in the party?

2

CMU CS251 Spring 2022

Solution. Create a vertex for each person in the party, and put an edge between two
people if they know each other. Note that the question is asking whether there can be a
5-regular graph with 251 nodes. We use Theorem (Handshake Theorem) to answer this
question. If such a graph exists, then the sum of the degrees would be 5 × 251, which
is an odd number. However, this number must equal 2m (where m is the number of
edges), and 2m is an even number. So we conclude that there cannot be a party with 251
people in which everyone knows exactly 5 other people. �

Definition (Paths and cycles). Let G = (V,E) be a graph. A path of length k in G is a
sequence of distinct vertices

v0, v1, . . . , vk

such that {vi−1, vi} ∈ E for all i ∈ {1, 2, . . . , k}. In this case, we say that the path is from
vertex v0 to vertex vk (or that the path is between v0 and vk).

A cycle of length k (also known as a k-cycle) in G is a sequence of vertices

v0, v1, . . . , vk−1, v0

such that v0, v1, . . . , vk−1 is a path, and {v0, vk−1} ∈ E.2 In other words, a cycle is just a
“closed” path. The starting vertex in the cycle is not important. So for example,

v1, v2, . . . , vk−1, v0, v1

would be considered the same cycle. Also, if we list the vertices in reverse order, we
consider it to be the same cycle. For example,

v0, vk−1, vk−2 . . . , v1, v0

represents the same cycle as before.
A graph that contains no cycles is called acyclic.

Definition (Connected graph, connected component). Let G = (V,E) be a graph. We
say that two vertices in G are connected if there is a path between those two vertices. A
connected graph G is such that every pair of vertices in G is connected.

A subset S ⊆ V is called a connected component of G if G restricted to S, i.e. the graph
G′ = (S,E′ = {{u, v} ∈ E : u, v ∈ S}), is a connected graph, and S is disconnected from
the rest of the graph (i.e. {u, v} 6∈ E when u ∈ S and v 6∈ S). Note that a connected graph
is a graph with only one connected component.

Definition (Distance between vertices). Let G = (V,E) be a graph. The distance between
vertices u, v ∈ V , denoted dist(u, v), is defined to be the length of the shortest path
between u and v. If u = v, then dist(u, v) = 0, and if u and v are not connected, then
dist(u, v) is defined to be∞.

Theorem (Min number of edges to connect a graph). Let G = (V,E) be a connected graph
with n vertices and m edges. Then m ≥ n − 1. Furthermore, m = n − 1 if and only if G is
acyclic.

Proof. We first prove that a connected graph with n vertices and m edges satisfies m ≥
n − 1. Take G and remove all its edges. This graph consists of isolated vertices and
therefore contains n connected components. Let’s now imagine a process in which we
put back the edges of G one by one. The order in which we do this does not matter. At
the end of this process, we must end up with just one connected component since G is
connected. When we put back an edge, there are two options. Either

1. we connect two different connected components by putting an edge between two
vertices that are not already connected, or

2In undirected graphs, we require k > 2.

3

CMU CS251 Spring 2022

2. we put an edge between two vertices that are already connected, and therefore
create a cycle.

Observe that if (1) happens, then the number of connected components goes down by 1.
If (2) happens, the number of connected components remains the same. So every time
we put back an edge, the number of connected components in the graph can go down
by at most 1. Since we start with n connected components and end with 1 connected
component, (1) must happen at least n− 1 times, and hence m ≥ n− 1. This proves the
first part of the theorem. We now prove m = n− 1⇐⇒ G is acyclic.

m = n− 1 =⇒ G is acyclic: If m = n− 1, then (1) must have happened at each step
since otherwise, we could not have ended up with one connected component. Note that
(1) cannot create a cycle, so in this case, our original graph must be acyclic.

G is acyclic =⇒ m = n − 1: To prove this direction (using the contrapositive),
assume m > n− 1. We know that (1) can happen at most n− 1 times. So in at least one
of the steps, (2) must happen. This implies G contains a cycle.

Definition (Tree, leaf, internal node). A graph satisfying two of the following three prop-
erties is called a tree:

1. connected,

2. m = n− 1,

3. acyclic.

A vertex of degree 1 in a tree is called a leaf. And a vertex of degree more than 1 is called
an internal node.

Exercise (Equivalent definitions of a tree). Show that if a graph has two of the properties
listed in Definition (Tree, leaf, internal node), then it automatically has the third as well.

Solution. If a graph is connected and satisfies m = n − 1, then it must be acyclic by
Theorem (Min number of edges to connect a graph). If a graph is connected and acyclic,
then it must satisfy m = n − 1, also by Theorem (Min number of edges to connect a
graph). So all we really need to prove is if a graph is acyclic and satisfies m = n − 1,
then it is connected. For this we look into the proof of Theorem (Min number of edges to
connect a graph). If the graph is acyclic, this means that every time we put back an edge,
we put one that satisfies (1) (here “(1)” is referring to the item in the proof of Theorem
(Min number of edges to connect a graph)). This is because any edge that satisfies (2)
creates a cycle. Every time we put an edge satisfying (1), we reduce the number of
connected components by 1. Since m = n− 1, we put back n− 1 edges. This means we
start with n connected components (n isolated vertices), and end up with 1 connected
component once all the edges are added back. So the graph is connected. �

Exercise (A tree has at least 2 leaves). Let T be a tree with at least 2 vertices. Show that
T must have at least 2 leaves.

Solution. We use Theorem (Handshake Theorem) to prove this (i.e.
∑

v deg(v) = 2m).
We’ll go by contradiction, so assume there is some tree T with n ≥ 2 and less than 2
leaves. Note that in any tree we have m = n − 1, and so

∑
v deg(v) = 2m = 2(n − 1) =

2n − 2. On the other hand, for a tree with at most one leaf, let’s calculate the minimum
value that

∑
v deg(v) can have. The minimum value would be obtained if there was 1

leaf and the other n − 1 vertices all had degree 2. In this case, the sum of the degrees of
the vertices would be

1 + 2(n− 1) = 2n− 1.

Putting things together, we have 2n − 2 =
∑

v deg(v) ≥ 2n − 1. This is the desired
contradiction. �

4

CMU CS251 Spring 2022

Exercise (Max degree is at most number of leaves). Let T be a tree with L leaves. Let ∆
be the largest degree of any vertex in T . Prove that ∆ ≤ L.

Solution. It is instructive to read all 3 proofs.
Proof 1: We use Theorem (Handshake Theorem). The degree sum in a tree is always
2n − 2 since m = n − 1. Let v be the vertex with maximum degree ∆. The vertices
that are not v or leaves must have degree at least 2 each, so the degree sum is at least
deg(v) + L + 2(n− L− 1). So we must have 2n− 2 ≥ deg(v) + L + 2(n− L− 1), which
simplifies to L ≥ deg(v) = ∆, as desired.
Proof 2: We induct on the number of vertices. For n ≤ 3, this follows by inspecting the
unique tree on n vertices. For n > 3, pick an arbitrary leaf u and delete it (and the edge
incident to u). Let T − u denote this graph, which is a tree (it is connected and acyclic).
Also, we let L(T) denote the number of leaves in T and L(T − u) to denote the number
of leaves in T − u. We make similar definitions for ∆(T) and ∆(T − u) regarding the
maximum degrees. Note that L(T) ≥ L(T − u). There are two cases to consider:

1. ∆(T − u) = ∆(T)

2. ∆(T − u) = ∆(T)− 1

If case 1 happens, then by the induction hypothesis L(T − u) ≥ ∆(T − u) = ∆(T). But
this implies L(T) ≥ ∆(T) (since L(T) ≥ L(T − u)), as desired.

Let v be the neighbor of u. If case 2 happens, then v is the only vertex of maximum
degree in T . In particular, v cannot be a leaf in T − u. So L(T) = L(T − u) + 1. The
induction hypothesis yields L(T − u) ≥ ∆(T − u) = ∆(T) − 1. Combining this with
L(T) = L(T − u) + 1 we get L(T) ≥ ∆(T), as desired.
Proof 3: Let v be a vertex in the tree such that deg(v) = ∆. Consider the graph T − v
obtained by deleting v and all the edges incident to it. Since T is a tree, we know that
T−v contains ∆ connected components; let us denote them T1, . . . , T∆. Since T is acyclic,
each of the Ti’s are also acyclic. Since each Ti is connected and acyclic, each one is a tree.
There are two possibilities for each Ti:

1. Ti consists of a single vertex. Then that vertex is a leaf in T .

2. Ti is not a single vertex, and so has at least 2 leaves (by Exercise (A tree has at least
2 leaves)). At least one of these leaves is not a neighbor of v and therefore must be
a leaf in T .

In either case, one vertex in Ti is a leaf in T . This is true for all T1, . . . , T∆. Hence we
have at least ∆ leaves in T . �

Note (Root, parent, child, sibling, etc.). Given a tree, we can pick an arbitrary node to
be the root of the tree. In a rooted tree, we use “family tree” terminology: parent, child,
sibling, ancestor, descendant, lowest common ancestor, etc. (We assume you are already
familiar with these terms.) Level i of a rooted tree denotes the set of all vertices in the
tree at distance i from the root.

Definition (Directed graph). A directed graph G is a pair (V,A), where

• V is a non-empty finite set called the set of vertices (or nodes),

• A is a finite set called the set of directed edges (or arcs), and every element of A is a
tuple (u, v) for u, v ∈ V . If (u, v) ∈ A, we say that there is a directed edge from u to
v. Note that (u, v) 6= (v, u) unless u = v.

Note (Drawing directed graphs). Below is an example of how we draw a directed graph:

5

CMU CS251 Spring 2022

Definition (Neighborhood, out-degree, in-degree, sink, source). Let G = (V,A) be a
directed graph. For u ∈ V , we define the neighborhood of u, N(u), as the set {v ∈
V : (u, v) ∈ A}. The vertices in N(u) are called the neighbors of u. The out-degree of u,
denoted degout(u), is |N(u)|. The in-degree of u, denoted degin(u), is the size of the set
{v ∈ V : (v, u) ∈ A}. A vertex with out-degree 0 is called a sink. A vertex with in-degree
0 is called a source.

Note (Paths and cycles in directed graphs). The notions of paths and cycles naturally
extend to directed graphs. For example, we say that there is a path from u to v if there
is a sequence of distinct vertices u = v0, v1, . . . , vk = v such that (vi−1, vi) ∈ A for all
i ∈ {1, 2, . . . , k}.

2 Graph Algorithms

2.1 Graph searching algorithms

Definition (Arbitrary-first search (AFS) algorithm). The arbitrary-first search algorithm,
denoted AFS, is the following generic algorithm for searching a given graph. Below,
“bag” refers to an arbitrary data structure that allows us to add and retrieve objects.
The algorithm, given a graph G and some vertex s in G, traverses all the vertices in the
connected componenet of G containing s.

def AFS(〈graph G = (V,E), vertex s ∈ V 〉) :

1. Put s into bag.

2. While bag is non-empty:

3. Pick an arbitrary vertex v from bag.

4. If v is unmarked:

5. Mark v.

6. For each neighbor w of v:

7. Put w into bag.

Note that when a vertex w is added to the bag, it gets there because it is the neighbor
of a vertex v that has been just marked by the algorithm. In this case, we’ll say that
v is the parent of w (and w is the child of v). Explicitly keeping track of this parent-
child relationship is convenient, so we modify the above algorithm to keep track of this
information. Below, a tuple of vertices (v, w) has the meaning that vertex v is the parent
of w. The initial vertex s has no parent, so we denote this situation by (⊥, s).

def AFS(〈graph G = (V,E), vertex s ∈ V 〉) :

1. Put (⊥, s) into bag.

2. While bag is non-empty:

3. Pick an arbitrary tuple (p, v) from bag.

4. If v is unmarked:

5. Mark v.

6. parent(v) = p.

7. For each neighbor w of v:

8. Put (v, w) into bag.

6

CMU CS251 Spring 2022

Note (AFS-tree). The parent pointers in the second algorithm above defines a tree, rooted
at s, spanning all the vertices in the connected component of the initial vertex s. We’ll call
this the tree induced by the search algorithm. Having a visualization of this tree and how
the algorithm traverses the vertices in the tree can be a useful way to understand how
the algorithm works. Below, we will actualize AFS by picking specific data structures
for the bag. We’ll then comment on the properties of the induced tree.

Note (Traversing all the vertices in the graph). Note that AFS(G, s) visits all the vertices
in the connected component that s is a part of. If we want to traverse all the vertices in
the graph, and the graph has multiple connected components, then we can do:

def AFS2(〈graph G = (V,E)〉) :

1. For v not marked as visited:

2. Run AFS(〈G, v〉)

Definition (Breadth-first search (BFS) algorithm). The breadth-first search algorithm, de-
noted BFS, is AFS where the bag is chosen to be a queue data structure.

Note (Running time of BFS). The running time of BFS(G, s) is O(m), where m is the
number of edges of the input graph. If we do a BFS for each connected component, the
total running time is O(m+n), where n is the number of vertices.3 (We are assuming the
graph is given as an adjacency list.)

Note (BFS-tree). The induced tree of BFS is called the BFS-tree. In this tree, vertices v at
level i of the tree are exactly those vertices with dist(s, v) = i. BFS first traverses vertices
at level 1, then level 2, then level 3, and so on. This is why the name of the algorithm is
breadth-first search.

Assuming G is connected, we can think of G as the BFS-tree, plus, the “extra” edges
in G that are not part of the BFS-tree. Observe that an extra edge is either between two
vertices at the same level, or is between two vertices at consecutive levels.

Definition (Depth-first search (DFS) algorithm). The depth-first search algorithm, de-
noted DFS, is AFS where the bag is chosen to be a stack data structure.

Note (Recursive DFS). There is a natural recursive representation of the DFS algorithm,
as follows.

def DFS(〈graph G = (V,E), vertex s ∈ V 〉) :

1. Mark s.

2. For each neighbor v of s:

3. If v is unmarked:

4. Run DFS(〈G, v〉).

Note (Running time of DFS). The running time of DFS(G, s) is O(m), where m is the
number of edges of the input graph. If we do a DFS for each connected component, the
total running time is O(m + n), where n is the number of vertices. (We are assuming the
graph is given as an adjacency list.)

Note (DFS-tree). The induced tree of DFS is called the DFS-tree. At a high level, DFS
goes as deep as it can in the DFS-tree until it cannot go deeper, in which case it backtracks
until it can go deeper again. This is why the name of the algorithm is depth-first search.

Assuming G is connected, we can think of G as the DFS-tree, plus, the “extra” edges
in G that are not part of the DFS-tree. Observe that an extra edge must be between two
vertices such that one is the ancestor of the other.

Note (Search algorithms on directed graphs). The search algorithms presented above
can be applied to directed graphs as well.

3Take a moment to reflect on why this is the case.

7

CMU CS251 Spring 2022

2.2 Minimum spanning tree

Definition (Minimum spanning tree (MST) problem). In the minimum spanning tree prob-
lem, the input is a connected undirected graph G = (V,E) together with a cost function
c : E → R+. The output is a subset of the edges of minimum total cost such that, in the
graph restricted to these edges, all the vertices of G are connected.4 For convenience,
we’ll assume that the edges have unique edge costs, i.e. e 6= e′ =⇒ c(e) 6= c(e′).

Note (Unique edges costs imply unique MST). With unique edge costs, the minimum
spanning tree is unique.

Theorem (MST cut property). Suppose we are given an instance of the MST problem. For any
non-trivial subset S ⊆ V , let e∗ = {u∗, v∗} be the cheapest edge with the property that u∗ ∈ S
and v∗ ∈ V \S. Then e∗ must be in the minimum spanning tree.

Proof. The overall proof strategy is to show that if e∗ is not in the MST, then we can find
an edge e′ = {u′, v′} from the MST (with u′ ∈ S and v′ ∈ V \S) such that replacing e′

with e∗ in the MST results in a new spanning tree with a smaller cost, a contradiction.
We now flesh this out.

Let T be the minimum spanning tree. The proof is by contradiction, so assume that
e∗ = {u∗, v∗} is not in T . Since T spans the whole graph, there must be a path from u∗

to v∗ in T . Let e′ = {u′, v′} be the first edge on this path such that u′ ∈ S and v′ ∈ V \S.
Let T ∗ = (T\{e′})∪ {e∗}. If T ∗ is a spanning tree, then we reach a contradiction because
T ∗ has lower cost than T (since c(e∗) < c(e′)).

We now show that T ∗ is a spanning tree. Clearly T ∗ has n−1 edges (since T has n−1
edges). So if we can show that T ∗ is connected, this would imply that T ∗ is a tree and
touches every vertex of the graph, i.e., T ∗ is a spanning tree.

To conclude the proof, we’ll now show that T ∗ is connected. Consider any two ver-
tices s, t ∈ V . We want to show that we can reach t starting from s. We know there is
a unique path from s to t in T . If this path does not use the edge e′ = {u′, v′}, then the
same path exists in T ∗, so s and t are connected in T ∗. If the path does use e′ = {u′, v′},
then instead of taking the edge {u′, v′}, we can take the following path: take the path
from u′ to u∗, then take the edge e∗ = {u∗, v∗}, then take the path from v∗ to v′. So re-
placing {u′, v′}with this path allows us to construct a sequence of vertices starting from
s and ending at t, such that each consecutive pair of vertices is an edge. Therefore, s and
t are connected.

Theorem (Jarnı́k-Prim algorithm for MST). There is an algorithm that solves the MST prob-
lem in polynomial time.

4Obviously this subset of edges would not contain a cycle since if it did, we could remove any edge on the
cycle, preserve the connectivity property, and obtain a cheaper set. Therefore, this set forms a tree.

8

CMU CS251 Spring 2022

Proof. We first present the algorithm which is due to Jarnı́k and Prim. Given an undi-
rected graph G = (V,E) and a cost function c : E → R+:

def MST(〈graph G = (V,E), function c : E → R+〉) :

1. V ′ = {u} (for some arbitrary u ∈ V).

2. E′ = ∅.
3. While V ′ 6= V :

4. Let {u, v} be the min cost edge such that u ∈ V ′ but v 6∈ V ′.

5. Add {u, v} to E′.

6. Add v to V ′.

7. Return E′.

By Theorem (MST cut property), the algorithm always adds an edge that must be in
the MST. The number of iterations is n − 1, so all the edges of the MST are added to E′.
Therefore the algorithm correctly outputs the unique MST.

The running time of the algorithm can be upper bounded by O(nm) because there
are O(n) iterations, and the body of the loop can be done in O(m) time.

Exercise (MST with negative costs). Suppose an instance of the Minimum Spanning Tree
problem is allowed to have negative costs for the edges. Explain whether we can use the
Jarnı́k-Prim algorithm to compute the minimum spanning tree in this case.

Solution. Yes, we can. Assign a rank to each edge of the graph based on its cost: the
highest cost edge gets the highest rank and the lowest cost edge gets the lowest rank.
When making its decisions, the Jarnı́k-Prim algorithm only cares about the ranks of the
edges, and not the specific costs of the edges. The algorithm would output the same tree
even if we add a constant C to the costs of all the edges since this would not change
the rank of the edges. And indeed, adding a constant to the cost of each edge does
not change what the minimum spanning tree is. Hence, we can turn any instance with
negative costs into and equivalent one with non-negative costs by adding a large enough
constant to all the edges without changing the tree that is output.

(Note: In fact the original algorithm would output the minimum cost spanning tree
even if the edge costs are allowed to be negative. There is not even a need to add a
constant to the edge costs.) �

Exercise (Maximum spanning tree). Consider the problem of computing the maximum
spanning tree, i.e., a spanning tree that maximizes the sum of the edge costs. Explain
whether the Jarnı́k-Prim algorithm solves this problem if we modify it so that at each
iteration, the algorithm chooses the edge between V ′ and V \V ′ with the maximum cost.

Solution. Let (G, c) be the input, where G = (V,E) is a graph and c : E → R+ is the
cost function. Let c′ : E → R− be defined as follows: for all e ∈ E, c′(e) = −c(e). Let
Amin be the original Jarnı́k-Prim algorithm and let Amax be the Jarnı́k-Prim algorithm
where we pick the maximum cost edge in each iteration. There are a couple of important
observations:

1. The minimum spanning tree for (G, c′) is the maximum spanning tree for (G, c).

2. Running Amax(G, c) is equivalent to running Amin(G, c′), and they output the same
spanning tree.

From Exercise (MST with negative costs), we know Amin(G, c′) gives us a minimum cost
spanning tree. So Amax(G, c) gives the correct maximum cost spanning tree. �

9

CMU CS251 Spring 2022

3 Check Your Understanding

Problem. 1. What is the maximum possible value for the number of edges in an
undirected graph (no self-loops, no multi-edges) in terms of n, the number of ver-
tices?

2. How do you prove the Handshake Theorem?

3. What is the definition of a tree?

4. True or false: If G = (V,E) is a tree, then for any u, v ∈ V , there exists a unique
path from u to v.

5. True or false: For a graph G = (V,E), if for any u, v ∈ V there exists a unique path
from u to v, then G is a tree.

6. True or false: If a graph on n vertices has n− 1 edges, then it must be acyclic.

7. True or false: If a graph on n vertices has n− 1 edges, then it must be connected.

8. True or false: If a graph on n vertices has n− 1 edges, then it must be a tree.

9. True or false: A tree with n ≥ 2 vertices can have a single leaf.

10. What is the minimum number of edges possible in a connected graph with n ver-
tices? And what are the high-level steps of the proof?

11. True or false: An acyclic graph with k connected components has n− k edges.

12. True or false: For every tree on n vertices,
∑

v∈V deg(v) has exactly the same value.

13. True or false: Let G be a 5-regular graph (i.e. a graph in which every vertex has
degree exactly 5). It is possible that G has 15251 edges.

14. True or false: There exists n0 ∈ N such that for all n > n0, there is a graph G with
n vertices that is 3-regular.

15. What is the difference between BFS and DFS?

16. True or false: DFS algorithm runs in O(n) time for a connected graph, where n is
the number of vertices of the input graph.

17. Explain why the running time of BFS and DFS is O(m + n); in particular where
does the m come from and where does the n come from?

18. What is the MST cut property?

19. Explain at a high-level how the Jarnı́k-Prim algorithm works.

20. True or false: Suppose a graph has 2 edges with the same cost. Then there are at
least 2 minimum spanning trees of the graph.

4 High-Order Bits

Important. Here are the important things to keep in mind from this chapter.

1. There are many definitions in this chapter. This is unfortunately inevitable in order
to effectively communicate with each other. On the positive side, the definitions
are often very intuitive and easy to guess. It is important that you are comfortable
with all the definitions.

10

CMU CS251 Spring 2022

2. In the first section of the chapter, we see a few proof techniques on graphs: degree
counting arguments, induction arguments, the trick of removing all the edges of
graph and adding them back in one by one. Make sure you understand these
techniques well. They can be very helpful when you are coming up with proofs
yourself.

3. The second section of the chapter contains some well-known graph algorithms.
These algorithms are quite fundamental, and you may have seen them (or will
see them) in other courses. Make sure you understand at a high level how the
algorithms work. The implementation details are not important in this course.

11

	Basic Definitions
	Graph Algorithms
	Graph searching algorithms
	Minimum spanning tree

	Check Your Understanding
	High-Order Bits

