
Turing Machines

1 Turing Machines and Decidability

Definition (Turing machine). A Turing machine (TM) M is a 7-tuple

M = (Q,Σ,Γ, δ, q0, qacc, qrej),

where

• Q is a non-empty finite set
(which we refer to as the set of states of the TM);

• Σ is a non-empty finite set that does not contain the blank symbol t
(which we refer to as the input alphabet of the TM);

• Γ is a finite set such that t ∈ Γ and Σ ⊂ Γ
(which we refer to as the tape alphabet of the TM);

• δ is a function of the form δ : Q× Γ→ Q× Γ× {L,R}
(which we refer to as the transition function of the TM);

• q0 ∈ Q is an element of Q
(which we refer to as the initial state of the TM or the starting state of the TM);

• qacc ∈ Q is an element of Q
(which we refer to as the accepting state of the TM);

• qrej ∈ Q is an element of Q such that qrej 6= qacc
(which we refer to as the rejecting state of the TM).

1

CMU CS251 Spring 2022

Remark (Flexibility of the tape alphabet). Allowing the tape alphabet to be any finite set
containing the blank symbol and the input alphabet gives us flexibility when designing
a TM. On the other hand, this flexibility is only for convenience and does not give extra
computational power to the TM computational model.

Remark (Equivalence of Turing machines). Similar to DFAs, we’ll consider two Turing
machines to be equivalent/same if they are the same machine up to renaming the ele-
ments of the sets Q, Σ and Γ.

Remark (No transition out of accepting and rejecting states). In the transition function δ
of a TM, we don’t really care about how we define the output of δ when the input state is
qacc or qrej because once the computation reaches one of these states, it stops. We explain
this below in Definition (Computation path for a TM).

Note (State diagram of a TM). Below is an example of a state diagram of a TM with 5
states:

In this example, Σ = {a, b}, Γ = {a, b,t}, Q = {q0, qa, qb, qacc, qrej}. The labeled arrows
between the states encode the transition function δ. As an example, the label on the

arrow from q0 to qa is a R
⇁ t, which represents δ(q0, a) = (qa,t,R)

Important (A Turing machine uses a tape). A Turing machine is always accompanied by
a tape that is used as memory. The tape is just a sequence of cells that can hold any symbol
from the tape alphabet. The tape can be defined so that it is infinite in two directions (so
we could imagine indexing the cells using the integers Z), or it could be infinite in one
direction, to the right (so we could imagine indexing the cells using the natural numbers
N). The input to a Turing machine is always a string w ∈ Σ∗. The string w1 . . . wn ∈ Σ∗ is
put on the tape so that symbol wi is placed on the cell with index i− 1. We imagine that
there is a tape head that initially points to index 0. The symbol that the tape head points
to at a particular time is the symbol that the Turing machine reads. The tape head moves
left or right according to the transition function of the Turing machine. These details are
explained in lecture.

In these notes, we assume our tape is infinite in two directions.

Important (Turing machines can loop forever). Given any DFA and any input string, the
DFA always halts and makes a decision to either reject or accept the string. The same
is not true for TMs and this is an important distinction between DFAs and TMs. It is
possible that a TM does not make a decision when given an input string, and instead,
loops forever. So given a TM M and an input string x, there are 3 options when we run
M on x:

• M accepts x (denoted M(x) = 1);

2

CMU CS251 Spring 2022

• M rejects x (denoted M(x) = 0);

• M loops forever (denoted M(x) =∞).

The formal definitions for these 3 cases is given below.

Definition (Computation path for a TM). Let M be a Turing machine where Q is the
set of states, t is the blank symbol, and Γ is the tape alphabet.1 To understand how
M ’s computation proceeds we generally need to keep track of three things: (i) the state
M is in; (ii) the contents of the tape; (iii) where the tape head is. These three things
are collectively known as the “configuration” of the TM. More formally: a configuration
forM is defined to be a string uqv ∈ (Γ∪Q)∗, where u, v ∈ Γ∗ and q ∈ Q. This represents
that the tape has contents · · ·tttuvttt· · · , the head is pointing at the leftmost symbol
of v, and the state is q. A configuration is an accepting configuration if q is M ’s accept state
and it is a rejecting configuration if q is M ’s reject state.2

Suppose that M reaches a certain configuration α (which is not accepting or reject-
ing). Knowing just this configuration and M ’s transition function δ, one can determine
the configuration β thatM will reach at the next step of the computation. (As an exercise,
make this statement precise.) We write

α `M β

and say that “α yields β (in M)”. If it is obvious what M we’re talking about, we drop
the subscript M and just write α ` β.

Given an input x ∈ Σ∗ we say that M(x) halts if there exists a sequence of configura-
tions (called the computation path) α0, α1, . . . , αT such that:

(i) α0 = q0x, where q0 is M ’s initial state;

(ii) αt `M αt+1 for all t = 0, 1, 2, . . . , T − 1;

(iii) αT is either an accepting configuration (in which case we say M(x) accepts) or a
rejecting configuration (in which case we say M(x) rejects).

Otherwise, we say M(x) loops.

Exercise (Practice with configurations). LetM denote the Turing machine shown below,
which has input alphabet Σ = {0} and tape alphabet Γ = {0, x,t}.

1Supernerd note: we will always assume Q and Γ are disjoint sets.
2There are some technicalities: The string u cannot start with t and the string v cannot end with t. This is

so that the configuration is always unique. Also, if v = ε it means the head is pointing at the t immediately to
the right of u.

3

CMU CS251 Spring 2022

Write out the computation path

α0 `M α1 `M · · · `M αT

for M(0000) and determine whether it accepts or rejects.

Solution. Read down first and then to the right.

q00000 q4x0x xq4xx

q1000 q4 t x0x q4xxx

xq200 q1x0x q4 t xxx
x0q30 xq10x q1xxx

x0xq2 xxq2x xq1xx

x0q4x xxxq2 xxq1x

xq40x xxq4x xxxq1

xxx t qacc

M(0000) accepts. �

Definition (TM solving/deciding a language or decision problem). Let f : Σ∗ → {0, 1}
be a decision problem and let M be a TM with input alphabet Σ. We say that M solves
(or decides, or computes) f if the input/output behavior of M matches f exactly, in the
following sense: for all w ∈ Σ∗, M(w) = f(w).

If L is the language corresponding to f , the above definition is equivalent to saying
that M solves (or decides, or computes) L if the following holds:

• if w ∈ L, then M accepts w (i.e. M(w) = 1);

• if w 6∈ L, then M rejects w (i.e. M(w) = 0).

If M solves a decision problem (language), M must halt on all inputs. Such a TM is
called a decider.

4

CMU CS251 Spring 2022

Note (Language of a TM). The language of a TM M is

L(M) = {w ∈ Σ∗ : M accepts w}.

Given a TMM , we cannot say thatM solves/decides L(M) becauseM may loop forever
for inputs w not in L(M). Only a decider TM can decide a language. And if M is indeed
a decider, then L(M) is the unique language that M solves/decides.

Exercise (A simple decidable language). Give a description of the language decided by
the TM shown in Note (State diagram of a TM).

Solution. The language decided by the TM is

L = {w ∈ {a, b}∗ : |w| ≥ 2 and w1 = w2}.

�

Exercise (Drawing TM state diagrams). For each language below, draw the state dia-
gram of a TM that decides the language. You can use any finite tape alphabet Γ contain-
ing the elements of Σ and the symbol t.

1. L = {0n1n : n ∈ N}, where Σ = {0, 1}.

2. L = {02n : n ∈ N}, where Σ = {0}.

Solution. 1. Our TM will have the tape alphabet Γ = {0, 1, #,t}. The rejecting state
is omitted from the state diagram below. All the missing transitions go to the
rejecting state.

2. See the figure in Exercise (Practice with configurations), part 2.
�

Definition (Decidable languages). A languageL is called decidable (or computable) if there
exists a TM that decides (i.e. solves) L.

5

CMU CS251 Spring 2022

Definition (Complexity class R). We denote by R the set of all decidable languages (over
the default alphabet Σ = {0, 1}).

Remark. A decidable language is also called a recursive language, and R is the standard
notation used in the literature for representing the set of all decidable/recursive lan-
guages.

So far, with DFAs and TMs, we talked about machines solving languages (i.e. deci-
sion problems). Unlike DFAs, there is a natural way to interpret TMs as solving more
general computational problems.

Definition (TM solving/computing a function problem). Let M be a TM with input
alphabet Σ. We say that on input x, M outputs the string y if the following hold:

• M(x) halts with the halting configuration being uqv (where q ∈ {qacc, qrej}),

• the string uv equals y.

In this case we write M(x) = y.
We say M solves (or computes) a function problem f : Σ∗ → Σ∗ if for all x ∈ Σ∗,

M(x) = f(x).

2 The Church-Turing Thesis

Important (The Church-Turing Thesis). The Church-Turing Thesis (CTT)3 states that any
computation that can be conducted in this universe (constrained by the laws of physics
of course), can be carried out by a TM. In other words, the set of problems that are in
principle computable in this universe is captured by the complexity class R.

There are a couple of important things to highlight. First, CTT says nothing about
the efficiency of the simulation.4 Second, CTT is not a mathematical statement, but a
physical claim about the universe we live in (similar to claiming that the speed of light
is constant). The implications of CTT is far-reaching. For example, CTT claims that
any computation that can be carried out by a human can be carried out by a TM. Other
implications are discussed in lecture.

Note (Low-level, medium-level, and high-level descriptions of TMs). We will consider
three different ways of describing TMs.

1. A low-level description of a TM is given by specifying the 7-tuple in its definition.
This information is often presented using a picture of its state diagram.

2. A medium-level description is an English description of the movement and be-
havior of the tape head, as well as how the contents of the tape is changing, as the
computation is being carried out.

3. A high-level description is pseudocode or an algorithm written in English. Usually,
an algorithm is written in a way so that a human can read it, understand it, and
carry out its steps. By CTT, there is a TM that can carry out the same computation.

Unless explicitly stated otherwise, you can present a TM using a high-level description.
From now on, we will do the same.

Example. Let’s consider the language L = {0n1n : n ∈ N}. The solution to Exercise
(Drawing TM state diagrams) has a low-level description of a TM deciding L.

Here is an example of a medium-level description of a TM deciding L.
3The statement we are using here is often called the Physical Church-Turing Thesis and is more general

than the original Church-Turing Thesis. In the original Church-Turing Thesis, computation is considered to
correspond to a human following step-by-step instructions.

4As an example, quantum computers can be simulated by TMs, but in certain cases, we believe that the
simulation can be exponentially slower.

6

CMU CS251 Spring 2022

Repeat:

If the current symbol is a blank or #, accept.

Else if the symbol is a 1, reject.

Else, cross off the 0 symbol with #.

Move to the right until a blank or # is reached.

Move one index to the left.

If the symbol is not a 1 reject.

Else, cross off the 1 symbol with a #.

Move to the left until a # symbol is reached.

Move one index to the right.

And here is a high-level decider for L.

def M(x) :

1. n = |x|.
2. If n is not even, reject.

3. For i = 1, 2, . . . , n/2:

4. If xi = 1 or xn−i+1 = 0, reject.

5. Accept.

Exercise (Decidability is closed under complementation, intersection and union). Let L
andK be decidable languages. Show that L = Σ∗ \L, L∩K and L∪K are also decidable
by presenting high-level descriptions of TMs deciding them.

Solution. Since L and L are decidable, there are decider TMs ML and MK such that
L(ML) = L and L(MK) = K.

To show L is decidable, we present a high-level description of a TM M deciding it:

def M(x) :

1. Run ML(x).

2. If it accepts, reject.

3. If it rejects, accept.

It is pretty clear that this decider works correctly.
To show L ∪K is decidable, we present a high-level description of a TM M deciding

it:

def M(x) :

1. Run ML(x). If it accepts, accept.

2. Run MK(x). If it accepts, accept.

3. Reject.

Once again, it is pretty clear that this decider works correctly. However, in case you
are wondering how in general (with more complicated examples) we would prove that
a decider works as desired, here is an example argument.

Following Definition (TM solving/deciding a language or decision problem), we
want to show that if x ∈ L ∪ K, then M(x) accepts, and if x 6∈ L ∪ K, then M(x) re-
jects. If x ∈ L ∪K, then it is either in L or in K. If it is in L, then ML(x) accepts (since
ML correctly decides L) and therefore M accepts on line 1. If, on the other hand, x ∈ K,
then MK(x) accepts. This means that if M does not accept on line 1, then it has to accept
on line 2. Either way x is accepted by M . For the second part, assume x 6∈ L ∪K. This

7

CMU CS251 Spring 2022

means x 6∈ L and x 6∈ K. Therefore M(x) will not accept on line 1 and it will not accept
on line 2. And so it rejects on line 3, as desired.

To show L ∩K is decidable, we present a high-level description of a TM M deciding
it:

def M(x) :

1. Run ML(x) and MK(x).

2. If they both accept, accept.

3. Else, reject.

�

Exercise (Decidable language based on pi). Fix Σ = {3} and let L ⊆ {3}∗ be defined as
follows: x ∈ L if and only if x appears somewhere in the decimal expansion of π. For
example, the strings ε, 3, and 33 are all definitely in L, because

π = 3.1415926535897932384626433 . . .

Prove that L is decidable. No knowledge in number theory is required to solve this
question.

Solution. The important observation is the following. If, for some m ∈ N, 3m is not in L,
then neither is 3k for any k > m. Additionally, if 3m ∈ L, then so is 3` for every ` < m.
For each n ∈ N, define

Ln = {3m : m ≤ n}.

Then either L = Ln for some n, or L = {3}∗.
If L = Ln for some n, then the following TM decides it.

def M(x) :

1. If |x| ≤ n, accept.

2. Else, reject.

If L = {3}∗, then it is decided by:

def M(x) :

1. Accept.

So in all cases, L is decidable. �

3 Universal Turing Machine

Note (Encodings of machines). In Chapter 1 we saw that we can use the notation 〈·〉 to
denote an encoding of objects belonging to any countable set. For example, ifD is a DFA,
we can write 〈D〉 to denote the encoding of D as a string. If M is a TM, we can write
〈M〉 to denote the encoding of M . There are many ways one can encode DFAs and TMs.
We will not be describing a specific encoding scheme as this detail will not be important
for us.5

5As an example, if P is some Python program, we can take 〈P 〉 to be the string that represents the source
code of the program. A DFA or a TM can also be viewed as a piece of code (as discussed in lecture). So we
could define an encoded DFA or TM to be the string that represents that code.

8

CMU CS251 Spring 2022

Recall that when we want to encode a tuple of objects, we use the comma sign. For
example, if M1 and M2 are two Turing machines, we write 〈M1,M2〉 to denote the en-
coding of the tuple (M1,M2). As another example, if M is a TM and x ∈ Σ∗, we can
write 〈M,x〉 to denote the encoding of the tuple (M,x).

Important (Code is data). The fact that we can encode a Turing machine (or a piece of
code) means that an input to a TM can be the encoding of another TM (in fact, a TM
can take the encoding of itself as the input). This point of view has several important
implications, one of which is the fact that we can come up with a Turing machine, which
given as input the description of any Turing machine, can simulate it. This simulator
Turing machine is called a universal Turing machine.

Definition (Universal Turing machine). Let Σ be some finite alphabet. A universal Turing
machine U is a Turing machine that takes 〈M,x〉 as input, where M is a TM and x is a
word in Σ∗, and has the following high-level description:

def U(〈TM M, string x〉) :

1. Simulate M on input x (i.e. run M(x))

2. If it accepts, accept.

3. If it rejects, reject.

Note that ifM(x) loops forever, then U loops forever as well. To make sureM always
halts, we can add a third input, an integer k, and have the universal machine simulate
the input TM for at most k steps.

Remark (Specifying input types). Above, when denoting the encoding of a tuple (M,x)
where M is a Turing machine and x is a string, we used 〈TM M, string x〉 to make clear
what the types of M and x are. We will make use of this notation from now on and
specify the types of the objects being referenced within the encoding notation.

Important (Checking the input type). When we give a high-level description of a TM,
we often assume that the input given is of the correct form/type. For example, with the
Universal TM above, we assumed that the input was the encoding 〈TM M, string x〉.
But technically, the input to the universal TM (and any other TM) is allowed to be any
finite-length string. What do we do if the input string does not correspond to a valid
encoding of an expected type of input object?

Even though this is not explicitly written, we will implicitly assume that the first
thing our machine does is check whether the input is a valid encoding of objects with
the expected types. If it is not, the machine rejects. If it is, then it will carry on with the
specified instructions.

The important thing to keep in mind is that in our descriptions of Turing machines,
this step of checking whether the input string has the correct form (i.e. that it is a valid
encoding) will never be explicitly written, and we don’t expect you to explicitly write it
either. That being said, be aware that this check is implicitly there.

4 Examples of Machines as Data

Definition (Languages related to encodings of DFAs). Fix some alphabet Σ.

• We call a DFA D satisfiable if there is some input string that D accepts. In other
words, D is satisfiable if L(D) 6= ∅.

• We say that a DFA D self-accepts if D accepts the string 〈D〉. In other words, D
self-accepts if 〈D〉 ∈ L(D).

9

CMU CS251 Spring 2022

We define the following languages:

ACCEPTSDFA = {〈D,x〉 : D is a DFA that accepts the string x},
SADFA = SELF−ACCEPTSDFA = {〈D〉 : D is a DFA that self-accepts},

SATDFA = {〈D〉 : D is a satisfiable DFA},
NEQDFA = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) 6= L(D2)}.

Theorem (ACCEPTSDFA and SADFA are decidable). The languages ACCEPTSDFA and
SADFA are decidable.

Proof. Our goal is to show that ACCEPTSDFA and SADFA are decidable languages. To
show that these languages are decidable, we will give high-level descriptions of TMs
deciding them.

For ACCEPTSDFA, the decider is essentially the same as a universal TM:

def M(〈DFA D, string x〉) :

1. Simulate D on input x (i.e. run D(x))

2. If it accepts, accept.

3. If it rejects, reject.

It is clear that this correctly decides ACCEPTSDFA.
For SADFA, we just need to slightly modify the above machine:

def M(〈DFA D〉) :

1. Simulate D on input 〈D〉 (i.e. run D(〈D〉))
2. If it accepts, accept.

3. If it rejects, reject.

Again, it is clear that this correctly decides SADFA.

Theorem (SATDFA is decidable). The language SATDFA is decidable.

Proof. Our goal is to show SATDFA is decidable and we will do so by constructing a
decider for SATDFA.

A decider for SATDFA takes as input 〈D〉 for some DFA D = (Q,Σ, δ, q0, F), and
needs to determine if D is satisfiable (i.e. if there is any input string that D accepts).
If we view the DFA as a directed graph,6 where the states of the DFA correspond to
the nodes in the graph and transitions correspond to edges, notice that the DFA accepts
some string if and only if there is a directed path from q0 to some state in F . Therefore,
the following decider decides SATDFA correctly.

def M(〈DFA D〉) :

1. Build a directed graph from 〈D〉.
2. Run a graph search algorithm starting from q0 of D.

3. If a node corresponding to an accepting state is reached, accept.

4. Else, reject.

6Even though we have not formally defined the notion of a graph yet, we do assume you are familiar
with the concept from a prerequisite course and that you have seen some simple graph search algorithms like
Breadth-First Search or Depth-First Search.

10

CMU CS251 Spring 2022

Theorem (NEQDFA is decidable). The language NEQDFA is decidable.

Proof. Our goal is to show that NEQDFA is decidable. We will do so by constructing a
decider for NEQDFA.

Our argument is going to use Theorem (SATDFA is decidable). In particular, the
decider we present for NEQDFA will use the decider for SATDFA as a subroutine. Let M
denote a decider TM for SATDFA.

A decider for NEQDFA takes as input 〈D1, D2〉, where D1 and D2 are DFAs. It needs
to determine if L(D1) 6= L(D2) (i.e. accept if L(D1) 6= L(D2) and reject otherwise). We
can determine if L(D1) 6= L(D2) by looking at their symmetric difference7 of L(D1) and
L(D2):

(L(D1) ∩ L(D2)) ∪ (L(D1) ∩ L(D2)).

Note that L(D1) 6= L(D2) if and only if the symmetric difference is non-empty. Our
decider for NEQDFA will construct a DFA D such that L(D) is the symmetric difference
of L(D1) and L(D2), and then run M(〈D〉) to determine if L(D) 6= ∅. This then tells us
if L(D1) 6= L(D2).

To give a bit more detail, observe that given D1 and D2, we can

• construct DFAs D1 and D2 that decide L(D1) and L(D2) respectively (see Exercise
(??));

• construct a DFA that decides L(D1) ∩ L(D2) by using the (constructive) proof that
regular languages are closed under the intersection operation;8

• construct a DFA that decides L(D1) ∩ L(D2) by using the proof that regular lan-
guages are closed under the intersection operation;

• construct a DFA, call itD, that decides (L(D1)∩L(D2))∪(L(D1)∩L(D2)) by using
the constructive proof that regular languages are closed under the union operation.

The decider for NEQDFA is as follows.

def M ′(〈DFA D1, DFA D2〉) :

1. Construct DFA D as described above.

2. Run M(〈D〉).
3. If it accepts, accept.

4. If it rejects, reject.

By our discussion above, the decider works correctly.
7The symmetric difference of sets A and B is the set of all elements that belong to either A or B, but not

both. In set notation, it corresponds to (A ∩B) ∪ (A ∩B).
8The constructive proof gives us a way to construct the DFA deciding L(D1) ∩ L(D2) given D1 and D2.

11

CMU CS251 Spring 2022

Important (Decidability through reductions). Suppose L and K are two languages and
K is decidable. We say that solving L reduces to solving K if given a decider MK for
K, we can construct a decider for L that uses MK as a subroutine (i.e. helper function),
thereby establishing L is also decidable. For example, the proof of Theorem (NEQDFA is
decidable) shows that solving NEQDFA reduces to solving SATDFA.

A reduction is conceptually straightforward but also a powerful tool to expand the
landscape of decidable languages.

Exercise (Practice with decidability through reductions). 1. LetL = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) (L(D2)}.9
Show that L is decidable.

2. Let K = {〈D〉 : D is a DFA that accepts wR whenever it accepts w}, where wR de-
notes the reversal of w. Show that K is decidable. For this problem, you can use
the fact that given a DFA D, there is an algorithm to construct a DFA D′ such that
L(D′) = L(D)R = {wR : w ∈ L(D)}.

Solution. Part 1: To show L is decidable, we are going to use Theorem (SATDFA is
decidable) and Theorem (NEQDFA is decidable). Let MSAT denote a decider TM for
SATDFA and let MNEQ denote a decider TM for NEQDFA.

A decider for L takes as input 〈D1, D2〉, where D1 and D2 are DFAs. It needs to
determine if L(D1) (L(D2) (i.e. accept if L(D1) (L(D2) and reject otherwise). To
determine this we do two checks:

(i) Check whether L(D1) 6= L(D2).

(ii) Check whetherL(D1) ⊆ L(D2). Observe that this can be done by checking whether
L(D1) ∩ L(D2) = ∅.

In other words, L(D1) (L(D2) if and only if L(D1) 6= L(D2) and L(D1) ∩ L(D2) = ∅.
Using the closure properties of regular languages, we can construct a DFA D such that
L(D) = L(D1) ∩ L(D2). Now the decider for L can be described as follows:

def M ′(〈DFA D1, DFA D2〉) :

1. Construct DFA D as described above.

2. Run MNEQ(〈D1, D2〉).
3. If it rejects, reject.

4. Run MSAT(〈D〉)
5. If it accepts, reject.

6. Accept.

Observe that this machine accepts 〈D1, D2〉 (i.e. reaches the last line of the algorithm)
if and only if MNEQ(〈D1, D2〉) accepts and MSAT(〈D〉) rejects. In other words, it accepts
〈D1, D2〉 if and only if L(D1) 6= L(D2) and L(D1) ∩ L(D2) = ∅, which is the desired
behavior for the machine.
Part 2: We sketch the proof. To show L is decidable, we are going to use Theorem
(NEQDFA is decidable). Let MNEQ denote a decider TM for NEQDFA. Observe that
〈D〉 is in K if and only if L(D) = L(D)R (prove this part). Using the fact given to
us in the problem description, we know that there is a way to construct 〈D′〉 such that
L(D′) = L(D)R. Then all we need to do is run MNEQ(〈D,D′〉) to determine whether
〈D〉 ∈ K or not. �

9Note on notation: for sets A and B, we write A (B if A ⊆ B and A 6= B.

12

CMU CS251 Spring 2022

5 Semi-Decidability

In this section we will look at a more relaxed notion of decidability called semi-decidability.
At first, this notion may seem unrealistic as we allow a “semi-decider” TM to loop for-
ever on certain inputs. However, the value of this concept will get clearer over time
when we uncover interesting connections in the future.

Definition (TM semi-deciding a language or decision problem). We can relax the notion
of a TM M solving a language L in the following way. We say that M semi-decides L if
for all w ∈ Σ∗,

w ∈ L ⇐⇒ M(w) accepts.

Equivalently,

• if w ∈ L, then M accepts w (i.e. M(w) = 1);

• if w 6∈ L, then M does not accept w (i.e. M(w) ∈ {0,∞}).

(Note that if w 6∈ L, M(w) may loop forever.)
We call M a semi-decider for L.

Definition (Semi-decidable languages). A language L is called semi-decidable if there ex-
ists a TM that semi-decides L.

Definition (Complexity class RE). We denote by RE the set of all semi-decidable lan-
guages (over the default alphabet Σ = {0, 1}).

Remark. A semi-decidable language is also called a recursively enumerable language, and
RE is the standard notation used in the literature for representing the set of all semi-
decidable/recursively enumerable languages.

Theorem (Characterization of decidability in terms of semi-decidability). A language L
is decidable if and only if both L and L = Σ∗ \ L are semi-decidable.

Proof. There are two directions to prove. First, let’s assume L is decidable. Every decid-
able language is semi-decidable, so L is semi-decidable. Furthermore, since decidability
is closed under complementation, we know L is decidable, and therefore semi-decidable
as well.

For the other direction, assume both L and L = Σ∗ \ L are semi-decidable, and let
M and M ′ be TMs that semi-decide L and L respectively. Our goal is to show that L is
decidable and we will do so by presenting a TM ML deciding L.

The main idea behind the construction of ML is as follows. Given input x, ML needs
to determine if x ∈ L or not. Note that if x ∈ L, then M(x) accepts, and if x 6∈ L then
M ′(x) accepts. So ML needs to determine whether M(x) or M ′(x) accepts. However,
the following TM would not be a correct decider.

def ML(x) :

1. Run M(x).

2. If it accepts, accept.

3. Run M ′(x).

4. If it accepts, reject.

This is not a correct decider because, if for instance x 6∈ L, it is possible that on line 1,
M(x) loops forever. So then ML would not be a decider. To correct this, we can run both
M and M ′ simultaneously (like running two threads), by alternating the simulation of

13

CMU CS251 Spring 2022

a single step of M(x) and the simulation of a single step of M ′(x). Since we have no
efficiency concerns, we can alternatively implement ML as follows.

def ML(x) :

1. For t = 1, 2, 3, . . .

2. Simulate M(x) for t steps.

3. If it halts and accepts, accept.

4. Simulate M ′(x) for t steps.

5. If it halts and accepts, reject.

To see that this is indeed a correct decider for L, let’s consider what happens for all
possible inputs.

If the input x is such that x ∈ L, then we know that since M is a semi-decider for
L, M(x) accepts after some number of steps. We also know that M ′ only accepts strings
that are not in L, and therefore does not accept x. These two observations imply that
ML(x) never rejects on line 5 and must accept on line 3.

If on the other hand if x 6∈ L, then we know that x is in L. Since M ′ is a semi-decider
for L, M ′(x) accepts after some number of steps. We also know that M only accepts
strings that are in L, and therefore does not accept x. These two observations imply that
ML(x) never accepts on line 3 and must reject on line 5.

Note (Comparing REG, R and RE). Observe that any regular language is decidable since
for every DFA, we can construct a TM with the same behavior (we ask you to make this
precise as an exercise below). Also observe that if a language is decidable, then it is also
semi-decidable. Based on these observations, we know REG ⊆ R ⊆ RE ⊆ ALL.

Furthermore, we know {0n1n : n ∈ N} is decidable, but not regular. Therefore we
know that the first inclusion above is strict. We will next investigate whether the other
inclusions are strict or not.

6 Check Your Understanding

Problem. 1. What are the 7 components in the formal definition of a Turing machine?

2. True or false: It is possible that in the definition of a TM, Σ = Γ, where Σ is the
input alphabet, and Γ is the tape alphabet.

3. True or false: On every valid input, any TM either accepts or rejects.

4. In the 7-tuple definition of a TM, the tape does not appear. Why is this the case?

5. What is the set of all possible inputs for a TM M = (Q,Σ,Γ, δ, q0, qacc, qrej)?

14

CMU CS251 Spring 2022

6. In the definition of a TM, the number of states is restricted to be finite. What is the
reason for this restriction?

7. State 4 differences between TMs and DFAs.

8. True or false: Consider a TM such that the starting state q0 is also the accepting
state qacc. It is possible that this TM does not halt on some inputs.

9. Let D = (Q,Σ, δ, q0, F) be a DFA. Define a decider TM M (specifying the compo-
nents of the 7-tuple) such that L(M) = L(D).

10. What are the 3 components of a configuration of a Turing machine? How is a
configuration typically written?

11. True or false: We say that a language K is a decidable language if there exists a
Turing machine M such that K = L(M).

12. What is a decider TM?

13. True or false: For each decidable language, there is exactly one TM that decides it.

14. What do we mean when we say “a high-level description of a TM”?

15. What is a universal TM?

16. True or false: A universal TM is a decider.

17. What is the Church-Turing thesis?

18. What is the significance of the Church-Turing thesis?

19. True or false: L ⊆ Σ∗ is undecidable if and only if Σ∗\L is undecidable.

20. Is the following statement true, false, or hard to determine with the knowledge we
have so far? ∅ is decidable.

21. Is the following statement true, false, or hard to determine with the knowledge we
have so far? Σ∗ is decidable.

22. Is the following statement true, false, or hard to determine with the knowledge we
have so far? The language {〈M〉 : M is a TM with L(M) 6= ∅} is decidable.

23. True or false: Let L ⊆ {0, 1}∗ be defined as follows:

L =

{
{0n1n : n ∈ N} if the Goldbach conjecture is true;
{12n : n ∈ N} otherwise.

L is decidable. (Feel free to Google what Goldbach conjecture is.)

24. Let L and K be two languages. What does “L reduces to K” mean? Given an
example of L and K such that L reduces to K.

7 High-Order Bits

Important. Here are the important things to keep in mind from this chapter.

1. Understand the key differences and similarities between DFAs and TMs are.

2. Given a TM, describe in English the language that it solves.

3. Given the description of a decidable language, come up with a TM that decides it.
Note that there are various ways we can describe a TM (what we refer to as the low
level, medium level, and the high level representations). You may need to present
a TM in any of these levels.

15

https://en.wikipedia.org/wiki/Goldbach's_conjecture

CMU CS251 Spring 2022

4. What is the definition of a configuration and why is it important?

5. The TM computational model describes a very simple programming language.

6. Even though the definition of a TM is far simpler than any other programming
language that you use, convince yourself that it is powerful enough to capture any
computation that can be expressed in your favorite programming language. This is
a fact that can be proved formally, but we do not do so since it would be extremely
long and tedious.

7. What is the Church-Turing thesis and what does it imply? Note that we do not
need to invoke the Church-Turing thesis for the previous point. The Church-Turing
thesis is a much stronger claim. It captures our belief that any kind of algorithm
that can be carried out by any kind of a natural process can be simulated on a
Turing machine. This is not a mathematical statement that can be proved but rather
a statement about our universe and the laws of physics.

8. The set of Turing machines is encodable (i.e. every TM can be represented using a
finite-length string). This implies that an algorithm (or Turing machine) can take
as input (the encoding of) another Turing machine. This idea is the basis for the
universal Turing machine. It allows us to have one (universal) machine/algorithm
that can simulate any other machine/algorithm that is given as input.

9. This chapter contains several algorithms that take encodings of DFAs as input. So
these are algorithms that take as input the text representations of other algorithms.
There are several interesting questions that one might want to answer given the
code of an algorithm (i.e. does it accept a certain input, do two algorithms with
different representations solve exactly the same computational problem, etc.) We
explore some of these questions in the context of DFAs. It is important you get used
to the idea of treating code (which may represent a DFA or a TM) as data/input.

10. This chapter also introduces the idea of a reduction (the idea of solving a computa-
tional problem by using, as a helper function, an algorithm that solves a different
problem). Reductions will come up again in future chapters, and it is important
that you have a solid understanding of what it means.

16

	Turing Machines and Decidability
	The Church-Turing Thesis
	Universal Turing Machine
	Examples of Machines as Data
	Semi-Decidability
	Check Your Understanding
	High-Order Bits

