
Induction Review

1 Introduction

In this chapter we will briefly review the concept of mathematical induction. We assume
that you are already familiar with this topic and that you have written induction proofs
before. Our goal here will be to remind ourselves of the basic principle behind induction
and show examples of different ways of packaging an induction argument. My hope is
that this will help you understand how an induction argument works more deeply and
go beyond just knowing about an induction proof template.

Hopefully you have heard about some version of the domino principle that all in-
duction arguments are built on.

Domino principle - finite version.

If you line up any number of dominoes in a row, and knock the first one over,
then all the dominoes will fall.

The implicit assumption here is that if a domino falls, then it knocks down the next
one in the row. We take this assumption as true.

The Domino Principle, as stated above, may suggest we have a finite number of
dominoes. But in fact, the principle applies to infinitely many dominoes as well and
this is crucial for the induction arguments we want to make. So let’s revise the domino
principle and make it a statement about an infinite row of dominoes.

Domino principle - infinite version.

If you line up an infinite row of dominoes, one domino for each natural num-
ber, and you knock the first one over, then all the dominoes will fall.

1



CMU CS251 Spring 2022

When dealing with infinity, you always have to be extra careful. It is one of the trick-
iest concepts in mathematics, and it has tripped up many professional mathematicians
in history. One of the common mistakes that beginners make is to treat infinity like any
old number. But this is incorrect.

Lucky for us, even though the domino principle talks about an infinite number of
dominoes, you can actually verify it using a finitary argument by employing a proof by
contradiction. Let’s see how that goes.

Proof. We prove the Domino Principle by contradiction, so suppose that all the dominoes
do not fall. Let domino number k be the smallest indexed domino that is standing. We
know the k’th domino is not the first domino since the first one is knocked down. And
since k is the smallest indexed domino that is standing, we know domino number k − 1
has fallen. But if domino k − 1 has fallen, it knocks down domino k, which contradicts
the assumption that domino k is standing.

As you know, in mathematical induction, the dominoes represent mathematical state-
ments that are indexed with numbers. So suppose you want to prove that for all n ∈ N,
Sn is true, where Sn is some mathematical statement. We can prove this if we can do
the following. Let Fk correspond to “Sk is true”. First establish F0. Then show that for
every k ∈ N, Fk implies Fk+1. With these in hand, we can conclude that Sn is true for
all n ∈ N. And the correctness of this follows from the way we argued that the Domino
Principle is correct.

Establish: 1. F0 (base case)
2. for all k, Fk =⇒ Fk+1 (induction step)

Conclude: Fk for all k

Note that there is of course flexibility in the way Sn are indexed. For instance, we may
be interested in proving Sn is true for all naturals n ≥ 251. In this case we prove S251 as
our base case and then show Sk implies Sk+1 for all k ≥ 251. As another example, we
may want to prove Sn is true for all even natural numbers. In this case we would prove
S0 in our base case (assuming you define 0 to be a natural number) and then establish
S2k implies S2(k+1) for naturals k.

You have probably heard about strong induction as well. We prefer to refer to the
previous argument as “weak induction” and refer to what is known as strong induction
as just induction. Of course what you call it is not really important. The important thing
is that the previous induction argument can be (and should be) strengthened. Weak
induction argument asks you to establish that for all k ∈ N, Fk implies Fk+1, which
means you need to derive Fk+1 assuming Fk is true. However, at this point, you can
assume that F0, F1, . . . , Fk are all true in order to show Fk+1 is true. On the way to
establishing Fk is true, we have established that all the lower indexed ones are true.

Establish: 1. F0 (base case)
2. for all k, F0, F1, . . . , Fk =⇒ Fk+1 (induction step)

Conclude: Fk for all k

Sometimes to establish Fk+1, all you need to assume is Fk. But in many scenarios,
the ability to assume F0, F1, . . . , Fk can be crucial to showing Fk+1. So you might as well
always assume F0, F1, . . . , Fk in your induction step.

Even though you may feel that you understand induction proofs really well, my ex-
perience is that many students tend to struggle with it when the induction argument is
packaged in a slightly different way than what they are used to. In particular, some-
times the Fk’s are not explicitly defined for you, sometimes Fk is a statement about

2



CMU CS251 Spring 2022

a collection of objects rather than one object, and sometimes the step of establishing
F0, F1, . . . , Fk =⇒ Fk+1 is unintuitive because it does not follow the standard weak
induction template of “Assume Fk, and then since x, y, z, we can conclude Fk+1.” These
and other variations can make induction proofs harder to grasp for beginners. Seeing
and getting comfortable with different examples helps a lot.

So now, let’s go over some of the different ways that an induction argument can be
packaged. We’ll start with the method of minimum counter-example, which we have
already talked about when arguing the correctness of the Domino Principle.

2 Method of Minimum Counter-Example

We’ll first do an example, and then outline the general idea of the method of minimum
counter-example.

Let’s prove that every natural number greater than 1 can be factored into primes. The
method of minimum counter-example is basically an induction proof done using a proof
by contradiction.

Proposition (Prime factorization). Every natural number greater than 1 can be factored into
primes.

Proof. The proof is by contradiction, so assume the statement is false, and let m > 1 be
the smallest number that cannot be factored into primes. We know m is a composite
number (i.e. a non-prime), so by definition, m = ab, where 1 < a, b < m. If a and b have
prime factorizations, then this would imply that m has a prime factorization. Therefore,
either a or b does not have a prime factorization. But this contradicts our assumption
that m is the smallest number that cannot be factored into primes.

As you can see in the proof, the way we reach the contradiction is that we chose m to
be the smallest counter-example and then deduce that there is a smaller counter-example
than m (either a or b). This contradicts the minimality of m. Another way to think
about the argument above is as follows. Let m be a counter-example (not necessarily the
smallest one). Then you can continuously find smaller and smaller counter-examples.
However, this is not possible since when we reach the base case (n = 2), we know the
statement is true.

Let’s pause here and try to really explicitly see why this is an induction argument
even though the write-up of the proof does not immediately suggest so. Let Sn be
the statement “n can be factored into primes”. We are trying to establish that for all
k ≥ 3, we have S2, S3, . . . , Sk−1 implies Sk. We prove this by contradiction, so we as-
sume it is not true, which implies that there is some value of k for which S2, S3, . . . , Sk−1
does not imply Sk. We let m be the minimum such number. This means we can as-
sume S2, S3, . . . , Sm−1 are all true, but Sm is not. We then proceed to show that one of
S2, S3, . . . , Sm−1 is not true and reach the desired contradiction.

General idea of method of minimum counter-example.

• Set up a proof by contradiction.

• Let m be the minimum number such that Sm is not true.

• Show that Sk is not true for k < m, which is the desired contradiction.

3 Invariant Induction

Let’s now move on to invariant induction. Once again, we’ll start with an example and
then outline the general strategy.

3



CMU CS251 Spring 2022

Proposition (Parity of handshakes). At any party, at any point in time, define a person’s
parity as odd or even according to the number of hands they have shaken. Then the number of
people with odd parity must be even.

Here we are not assuming anything about the number of people in total, so the state-
ment should hold for all numbers of people. But we will not be actually inducting on
the number of people.

Proof. Initially, 0 hands have been shaken, so 0 people have odd parity, i.e. and even
number of people have odd parity. We now argue that this property stays invariant no
matter how many handshakes occur. Consider an arbitrary point in the party and let t
be the number of people with odd parity. We analyze how t changes when a handshake
occurs. There are 3 possibilities:

• Two people with odd parity shake hands. These people will no longer have odd
parity, so t will go down by 2.

• Two people with even parity shake hands. These people will no longer have even
parity, so t will go up by 2.

• A person with an odd parity shakes the hand of a person with even parity. In
this case, the even parity person becomes odd parity, and the odd parity person
becomes even parity. As a result, the value of t does not change.

Note that in all cases, the parity of t remains unchanged. So we can conclude that there
is always an even number of people with odd parity.

So the summary is that we confirm that initially the statement is true and that with
every handshake, the statement continues to be true, so we are done.

Ok, why was this an induction argument? Well, implicitly Sn is defined to be the
statement that “after n handshakes, the number of people with odd parity is even.” We
then proceed to show that S0 is true, and also that Sn implies Sn+1 for all n.

General idea of invariant induction.

• We have a time-varying world state: W0,W1,W2, . . ..

• The goal is to prove that some statement S is true for all world states.

• Argue:

– Statement S is true for W0.

– If S is true for Wk, then it remains true for Wk+1.

4 Structural Induction

So far so good. We now arrive at the final example that we will cover: structural in-
duction. Simply put, structural induction is an induction argument proving statements
about objects that can be recursively defined. Lists, strings and graphs are good exam-
ples of objects that can be defined recursively. For instance, if s a non-empty list, then s
with the first element removed is also a list. Strings are similar since they can be viewed
as a list of characters/symbols. More explicitly, we can define strings recursively as
shown below.

Definition (String - recursive definition). Fix some finite set of symbols Σ. We define a
string over Σ recursively as follows.

• Base case: The empty sequence, denoted ε, is a string.

• Recursive rule: If x is a string and a ∈ Σ, then ax is a string.

4



CMU CS251 Spring 2022

Note that any string (over Σ) can be obtained by starting from the base case and then
applying the recursive rule a finite number of times.

This way of defining a string hopefully gives a strong suggestion that induction can
be a useful strategy in proving results about strings. Let’s make the connection explicit
using another example: (rooted) binary trees. Binary trees have the following recursive
structure: if you have a binary tree T with root r, then the left subtree T ′ and the right
subtree T ′′ both are binary trees themselves.

Definition (Binary tree - recursive definition). We define a binary tree recursively as fol-
lows.

• Base case: A single node r is a binary tree with root r.

• Recursive rule: If T ′ and T ′′ are binary trees with roots r1 and r2, then T , which
has a node r adjacent to r1 and r2 is a binary tree with root r.

Once again, any binary tree can be obtained by starting from the base case and then
applying the recursive rules a finite number of times.

It turns out, in a rooted binary tree, every node has 0 or 2 children. A node with no
children is called a leaf, and a node with 2 children is called an internal node.

What we will now prove is that in any binary tree, the number of leaves is always
exactly one more than the number of internal nodes. We will do so using an induction
argument that is commonly known as structural induction. We present the proof next,
and then we’ll discuss why it is a valid induction proof.

Proposition (Internal nodes vs leaves in binary trees). Let T be a binary tree. Let LT be the
number of leaves in T and let IT be the number of internal nodes in T . Then LT = IT + 1.

Proof. The proof is by structural induction. In the base case T is a single node, and in
this case LT = 1 and IT = 0 as desired.

To carry out the induction step, consider an arbitrary binary tree T not corresponding
to the base case. Let T ′ be the left binary subtree of T and let T ′′ be the right binary
subtree. We know that:

LT = LT ′ + LT ′′ , (∗)
IT = IT ′ + IT ′′ + 1. (∗∗)

By induction hypothesis we can assume LT ′ = IT ′ + 1 and LT ′′ = IT ′′ + 1. Our goal is
to show LT = IT + 1, and we can do so by the following chain of equalities:

LT
(∗)
= LT ′ + LT ′′ = IT ′ + 1 + IT ′′ + 1

(∗∗)
= IT + 1.

5



CMU CS251 Spring 2022

It is completely normal if this feels like a strange induction argument. It might very
well be that it is unlike any other induction argument you have seen before.

Let’s try to dissect it a bit. First, what is the parameter n we are inducting on, and
what does Sn correspond to in this particular case? The proof says “By induction hy-
pothesis” but what is actually the induction hypothesis? Think about these questions
and see if you can find satisfactory answers.

To clarify things a bit more, let’s see the general idea behind a structural induction
argument.

General idea of structural induction.

• You have a recursively defined set of objects, and you want to prove a statement S
about those objects.

• Check that S is true for the base case(s) of the recursive definition.

• Prove S holds for “new” objects created by the recursive rule, assuming it holds
for “old” objects used in the recursive rule.

In the previous example, we first confirmed the statement for the base case of a tree
with a single node. We then considered an arbitrary binary tree T (not corresponding to
the base case), which we think of as the “new” object created by the recursive rule. By
considering the last application of the recursive rule that created T , we identify T ′ and
T ′′ as the left and the right subtrees of T , and these correspond to the “old” objects. In
structural induction argument, we assume that the statement we want to prove about
T already holds for the smaller/older objects T and T ′′. And from there, with some
calculations, we show that it must also hold for T , completing the induction step, and
the proof.

Ok, so why is this valid? Going back to the previous questions, what is the parameter
we are inducting on here? What is Sn? Not just in the binary tree example we did, but
in the general framework outlined above.

Let’s define Sn explicitly in the general case.
Suppose you have a set of objects O defined recursively (e.g. set of rooted binary

trees). And you want to show that every object in the set has some property P . Define the
degree of an object as the minimum number of applications of the recursive rule needed
to create the object. Then we can define On to be the set of all objects in O with degree
n. Therefore, O is the union of all the On’s. We define Sn as the statement “every object
in On has property P”. So showing that all objects in O has property P is equivalent to
showing Sn for all n. And when you do that using induction on n, we call it structural
induction.

One has to be careful with this kind of induction because often, Sn is a statement
about a collection of objects, not just one. And when you want to establish, in the induc-
tion step, that S0, S1, . . . , Sk−1 implies Sk, you need to make sure that every object in Ok

is covered. Let’s see an example where a mistake is made along these lines. We’ll again
consider rooted binary trees.

Some sketch of a “proof”.

We prove statement S by induction on the height of a tree. Let’s first check
the base case... and it is true.

For the induction step, take an arbitrary binary tree T of height h. Let T ′ be
the following tree of height h+ 1:

6



CMU CS251 Spring 2022

[Some argument showing why S is true for T ′] Therefore we are done.

Try to articulate what is wrong with the above argument.
When we induct on height, we group the binary trees slightly differently. In particu-

lar, instead of grouping them by the number of recursive rules needed to create a binary
tree, we group them according to height so thatOn corresponds to all rooted binary trees
of height n. This strategy is perfectly fine and the correct proof we had before applies to
this scenario as well. The strategy used above, however, is different. It tries to prove Sh

implies Sh+1, where Sh is “in all rooted binary trees of height h, the number of leaves
is one more than the number of internal nodes”. But it falls short of establishing this.
It does not correctly derive Sh+1 because it does not establish the property holds for all
trees of height h + 1. It only establishes it for trees where the right subtree is a single
node.

Let’s think more about the correct argument we presented earlier. It was kind of
weird because it seemed like we were doing the induction step backwards. Let’s use
height as our induction parameter. We started by considering a binary tree of some
height h, and then extracted the left and right subtrees that have smaller heights. Isn’t
that going backwards? Shouldn’t we start with a tree of height h and then construct a
tree of height h+ 1?

Here is a simple picture of what we want to establish in the induction step. Assuming
the property holds for all objects in O0,O1, . . . ,Ok−1, we want to show that it holds for
all objects in Ok. We have to make sure that in our argument we cover all the objects in
Ok. We can’t leave anything out. With that in mind, we start the argument as “Consider
an arbitrary object T of Ok” with the intention of showing that T has property P . Note
that if we are able to do this, then we are done! Because when you show something is
true for an arbitrary object in a set, you show it for all the objects in the set.

Also notice that we want to show O0,O1, . . . ,Ok−1 implies Ok for all k. So we might
as well consider an arbitrary k > 0. It shouldn’t matter what it is. This is why in our ar-
gument, we actually started with “Consider an arbitrary object T” without any reference
to a parameter k.

Great, so we start with “Consider an arbitrary tree T (not corresponding to the base
case)”. It implicitly belongs to Ok for some k > 0. Then what do we do? Well, T has a

7



CMU CS251 Spring 2022

recursive structure, so we view it as being composed of one or more “smaller” objects
in O0,O1, . . . ,Ok−1. The power of induction gives us the ability to assume that these
smaller objects do have property P . Using this, we proceed to show that T must also
have property P . And we are done.

As you can see, we were never going backwards in our induction step and that we
were indeed arguing S0, S1, . . . , Sk−1 implies Sk.

We will leave you with one last example/exercise. This one involves a set of binary
strings that is defined recursively. Please attempt to prove it yourself using structural
induction. This is very important. If you are able to do it, that is awesome! If not,
hopefully you will be able to identify where your understanding might be lacking. And
that is very valuable. You can go back and try to fill in the gaps yourself, or let us know,
and we would be happy to help out.

Exercise (Recursively defined language). Let L be a set of binary strings (i.e. strings over
Σ = {0, 1}) defined recursively as follows:

• (base case) the empty string, ε, is in L;

• (recursive rule) if x, y ∈ L, then 0x1y0 ∈ L.

This means that every string in L is derived starting from the base case, and applying
the recursive rule a finite number of times. Show that for any string w ∈ L, the number
of 0’s in w is exactly twice the number of 1’s in w.

Solution. Let 0(w) denote the number of 0’s in w and let 1(w) denote the number of
1’s in w. Given L as defined above, the question asks us to show that for any w ∈ L,
0(w) = 2 · 1(w). We will do so by structural induction.

The base case corresponds to w = ε, and in this case, 0(w) = 1(w) = 0, and therefore
0(w) = 2 · 1(w) holds.

To carry out the induction step, consider an arbitrary string w 6= ε in L. Then by the
definition ofL, we know that there exists x and y inL such thatw = 0x1y0. Furthermore,
by induction hypothesis,

0(x) = 2 · 1(x) (∗)
and

0(y) = 2 · 1(y). (∗∗)
We are done once we show 0(w) = 2 · 1(w). We establish this via the following chain of
equalities:

0(w) = 2 + 0(x) + 0(y) since w = 0x1y0

= 2 + 2 · 1(x) + 2 · 1(y) by (∗) and (∗∗)
= 2 · (1 + 1(x) + 1(y))

= 2 · 1(w).

�

Important (On structural induction proof write-up). In an induction argument on recur-
sively defined objects, if you say that you will use structural induction, then the assump-
tion is that the parameter being inducted on is the minimum number of applications of
the recursive rules needed to create an object. And in this case, explicitly stating the
parameter being inducted on, or the induction hypothesis, is not needed.

As a final remark, we want to emphasize that even though we gave different names
to the induction proofs we have seen in this chapter, they are really all the same kind of
argument. They all follow the basic (strong) induction proof strategy. So this was not
about teaching you new proof strategies, not at all, but rather about seeing examples of
how a regular induction proof can manifest itself in different settings. And hopefully,
this has made you appreciate and understand induction proofs better.

This marks the end of this chapter. If you have any questions about anything, don’t
hesitate to ask!

8


	Introduction
	Method of Minimum Counter-Example
	Invariant Induction
	Structural Induction

